Biomedical Microdevices

, Volume 7, Issue 4, pp 341–345 | Cite as

Self-Assembled Three Dimensional Radio Frequency (RF) Shielded Containers for Cell Encapsulation

  • Barjor Gimi
  • Timothy Leong
  • Zhiyong Gu
  • Michael Yang
  • Dmitri Artemov
  • Zaver M. Bhujwalla
  • David H. Gracias
Article

Abstract

This paper describes the construction of three dimensional (3D) encapsulation devices in large numbers, using a novel self-assembling strategy characterized by high mechanical stability, controlled porosity, extreme miniaturization, high reproducibility and the possibility of integrating sensing and actuating electromechanical modules. We demonstrated encapsulation of microbeads and cells within the containers, thereby demonstrating one possible application in cell encapsulation therapy. Magnetic resonance (MR) images of the containers in fluidic media suggest radio frequency (RF) shielding and a susceptibility effect, providing characteristic hypointensity within the container, thereby allowing the containers to be easily detected. This demonstration is the first step toward the design of 3D, micropatterned, non-invasively trackable, encapsulation devices.

Keywords

3D microtechnology self assembly cell encapsulation MRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Aebischer, P.A. Tresco, S.R. Winn, L.A. Greene, and C.B. Jaeger, Exp. Neurol. 111, 269 (1991).CrossRefGoogle Scholar
  2. L.W. Bartels, H.F. Smits, C.J. Bakker, and M.A. Viergever, J. Vasc. Interv. Radiol. 12, 365 (2001).Google Scholar
  3. R. Cailleau, R. Young, M. Olive, and W.J. Reeves, Jr., J. Natl. Cancer Inst. 53, 661 (1974).Google Scholar
  4. T.M.S. Chang, Nat. Rev. Drug Discov. 4, 221 (2005).CrossRefGoogle Scholar
  5. T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnol. Bioeng. 57, 118 (1997).Google Scholar
  6. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, and G.M. Whitesides, Chem. Rev. 105, 1171 (2005).CrossRefGoogle Scholar
  7. D.H. Gracias, V. Kavthekar, J.C. Love, K.E. Paul, and G.M. Whitesides, Adv. Mater. 14, 235 (2002).CrossRefGoogle Scholar
  8. K.F. Harsh, V.M. Bright, and Y.C. Lee, Sens. Actuators A 77, 237 (1999).Google Scholar
  9. E.E. Hui, R.T. Howe, and M.S. Rodgers, IEEE 13th Int. Conf. Microelectromech. Syst., 602 (2000).Google Scholar
  10. E.E. Johnston, J.D. Bryers, and B.D. Ratner, Langmuir 2005, 870 (2005).Google Scholar
  11. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).Google Scholar
  12. J. Kost and R. Langer, Adv. Drug Deliv. Rev. 46, 125 (2001).CrossRefGoogle Scholar
  13. R.P. Lanza, J.L. Hayes, and W.L. Chick, Nat. Biotech. 14, 1107 (1996).Google Scholar
  14. L. Leoni and T.A. Desai, Adv. Drug Deliv. Rev. 56, 211 (2004).CrossRefGoogle Scholar
  15. G. Lesinski, S. Sharma, K. Varker, P. Sinha, M. Ferrari, and W. Carson, Biomed. Microdevices 7, 71 (2005).CrossRefGoogle Scholar
  16. F. Lim and A.M. Sun, Science 210, 908 (1980).Google Scholar
  17. M.J. Madou, Fundamentals of Microfabrication. 2nd ed (CRC Press, Boca Raton, Fla., 2002).Google Scholar
  18. G. Orive, R.M. Hernandez, A.R. Gascon, M. Igartua, and J.L. Pedraz, Trends Biotech. 20, 382 (2002).Google Scholar
  19. G.M. O'Shea and A.M. Sun, Diabetes 35, 943 (1986).Google Scholar
  20. E. Ostuni, R.G. Chapman, M.N. Liang, G. Meluleni, G. Pier, D.E. Ingber, and G.M. Whitesides, Langmuir 17, 6336 (2001).Google Scholar
  21. T. Pizzorusso, V. Porciatti, J.L. Tseng, P. Aebischer, and L. Maffei, Neuroscience 80, 307 (1997).Google Scholar
  22. B. Rihova, Adv. Drug Deliv. Rev. 42, 65 (2000).Google Scholar
  23. Y. Sagot, S.A. Tan, E. Baetge, H. Schmalbruch, A.C. Kato, and P. Aebischer, Eur. J. Neurosci. 7, 1313 (1995).Google Scholar
  24. J.T. Santini, M.J. Cima, and R. Langer, Nature 97, 335 (1999).Google Scholar
  25. B.A. Schueler, T.B. Parrish, J.C. Lin, B.E. Hammer, B.J. Pangrle, E.R. Ritenour, J. Kucharczyk, and C.L. Truwit, J. Magn. Reson. Imaging 9, 596 (1999).CrossRefGoogle Scholar
  26. A. Shenhav and H. Azhari, Magn. Reson. Med. 52, 1465 (2004).CrossRefGoogle Scholar
  27. P. Sinha, G. Valco, S. Sharma, X. Liu, and M. Ferrari, Nanotechnology 15, 585 (2004).CrossRefGoogle Scholar
  28. R.R.A. Syms, E.M. Yeatman, V.M. Bright, and G.M. Whitesides, J. Microelectromech. Syst. 387 (2003).Google Scholar
  29. A. Terfort, N. Bowden, and G.M. Whitesides, Nature 86, 162 (1997).Google Scholar
  30. R.H. Thomlinson and L.H. Gray, Br. J. Cancer 9, 539 (1955).Google Scholar
  31. A.B. Tsaliovich, Electromagnetic Shielding Handbook for Wired and Wireless EMC Applications (Kluwer Academic, Boston, 1999).Google Scholar
  32. R.J. Walczak, A. Boiarski, M. Cohen, T. West, K. Melnik, J. Shapiro, S. Sharma, and M. Ferrari, NanoBiotech. 1, 35 (2005).Google Scholar
  33. G.M. Wallraff and W.D. Hinsberg, Chem. Rev. 99, 1801 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Barjor Gimi
    • 1
  • Timothy Leong
    • 2
  • Zhiyong Gu
    • 2
  • Michael Yang
    • 2
  • Dmitri Artemov
    • 1
  • Zaver M. Bhujwalla
    • 1
  • David H. Gracias
    • 2
    • 3
  1. 1.The Russell H. Morgan Department of Radiology and Radiological SciencesThe Johns Hopkins University School of MedicineBaltimore
  2. 2.Department of Chemical and Biomolecular EngineeringBaltimore
  3. 3.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations