Biomedical Microdevices

, Volume 7, Issue 4, pp 331–339 | Cite as

Ultrafast Nanolaser Flow Device for Detecting Cancer in Single Cells

  • Paul L. Gourley
  • Judy K. Hendricks
  • Anthony E. McDonald
  • R. Guild Copeland
  • Keith E. Barrett
  • Cheryl R. Gourley
  • R. K. Naviaux
Article

Abstract

Currently, pathologists rely on labor-intensive microscopic examination of tumor cells using staining techniques originally devised in the 1880s that depend heavily on specimen preparation and that can give false readings. Emerging BioMicroNanotechnologies (Gourley, 2005) have the potential to provide accurate, realtime, high throughput screening of tumor cells without invasive chemical reagents. These techniques are critical to advancing early detection, diagnosis, and treatment of disease. Using a new technique to rapidly assess the properties of cells flown through a nanolaser semiconductor device, we discovered a method to rapidly assess the respiratory health of a single mammalian cell. The key discovery was the elucidation of biophotonic differences in normal and transformed (cancer) mouse liver cells by using intracellular mitochondria as biomarkers for disease. This technique holds promise for detecting cancer at a very early stage and could nearly eliminate delays in diagnosis and treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Backman et al., Selected Topics in Quantum Electronics 5(4), 1019 (1998).Google Scholar
  2. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light Small Particles (Wiley, New York, 1983).Google Scholar
  3. C.D. Bortner and J.A. Cidlowski, J Biol Chem. 274(31), 21953–21962 (1999).CrossRefGoogle Scholar
  4. N.N. Boustany, R. Drezek, and N.V. Thakor, Biophys. J. 83(3), 1691–177 (2002).CrossRefGoogle Scholar
  5. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, and R.P. Chang, Phys. Rev. Lett. 82, 2278 (1999).CrossRefGoogle Scholar
  6. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, and R.P. Chang, Phys. Rev. Lett. 82, 2278–2281 (1999).CrossRefGoogle Scholar
  7. S.J. Cox, V.Y. Reshetnyakzx, and T.J. Sluckinz, J. Phys. D: Appl. Phys. 31, 1611–1625 (1998).CrossRefGoogle Scholar
  8. R. Drezek, A. Dunn, and R. Richards-Kortum, Optical Express 6, 147–157 (2000).Google Scholar
  9. S.V. Frolov, Z.V. Vardeny, K. Yoshino, A. Zakhidov, and R.H. Baughman, Phys. Rev. B 59, R5284 (1999).CrossRefGoogle Scholar
  10. W. Gao, Y. Pu, K.Q. Luo, and D.C. Chang, Journal of Cell Science 114, 2855–2862 (2001).Google Scholar
  11. A.Z. Genack, and J.M. Drake, Nature 368, 400 (1994).CrossRefGoogle Scholar
  12. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, J. Opt. Soc. Am. B 10, 2358 (1993).CrossRefGoogle Scholar
  13. P.L. Gourley, Biotechnology Progress, American Chemical Society to appear (Feb. 2005).Google Scholar
  14. P.L. Gourley, J. Phys. D: Appl. Phys. 36(14), R228–R229 (2003).CrossRefMathSciNetGoogle Scholar
  15. P.L. Gourley, P. Chen, R.G. Copeland, J.D. Cox, J.K. Hendricks, A.E. McDonald, D.Y. Sasaki, M.E. Keep, and J.R. Karlsson, in Proc. Conf. on Microfluidics, BioMEMS and Medical Microsystems SPIE 5345, edited by P. Woias and I. Papautsky, (Photonics West, San Jose, 2004), p. 51.Google Scholar
  16. P.L. Gourley, R.G. Copeland, J.K. Hendricks, A.E. McDonald, and R.K. Naviaux, IEEE J. of Selected Topics in Quantum Electronics: Biophotonics, accepted.Google Scholar
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media vol 1 and 2, (Academic, New York, 1978).Google Scholar
  18. L.V. Johnson, M.L. Walsh, and L.B. Chen, Proc. Natl. Acad. Sci. (77, USA, 1980), p. 990–994.Google Scholar
  19. G. Kroemer, and J.C. Reed, PubMed Nat. Med. 6, 513–519 (2000).Google Scholar
  20. N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, and E. Sauvain, Nature 368, 436 (1994).CrossRefGoogle Scholar
  21. V.S. Letokhov, Sov. Phys. JEPT 26, 835 (1968).Google Scholar
  22. S. Modica-Napolitano and K.K. Singh, Expert Reviews in Molecular Medicine: http://www.expertreviews.org/ (Cambridge University Press ISSN 1462–3994, Cambridge, 2002).
  23. J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Elick, D. Shen, and T. Johnson, Appl. Opt. 37, 3586–3593 (1998).CrossRefGoogle Scholar
  24. R.G. Newton, Scattering Theory of Waves in Particles, 2nd edn. (Springer, Berlin, 1982).Google Scholar
  25. K. Polyak, et al., Pub Med Nat. Genet 20, 291–293 (1998).Google Scholar
  26. K.K. Singh, Mitochondrial DNA Mutations in Aging, Disease and Cancer (Springer, New York, 1998).Google Scholar
  27. K.K. Singh, Mitochondrion 1, 1–2. (2000).Google Scholar
  28. A. Tzagoloff, Mitochondria (Plenum Press, New York, 1982).Google Scholar
  29. H.C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).Google Scholar
  30. O. Warburg, Oxygen, The Creator of Differentiation, Biochemical Energetics (Academic Press, NewYork, 1966).Google Scholar
  31. O. Warburg, Metabolism of Tumors (Arnold Constable, London, UK, 1930).Google Scholar
  32. O. Warburg, Science 123, 309–314 (1956).Google Scholar
  33. D.S. Wiersma and A. Lagendijk, “Laser Action in White paint” http://www.science.uva.nl/research/scm/index.html.
  34. D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature (London) 390, 671 (1997).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Paul L. Gourley
    • 1
  • Judy K. Hendricks
    • 1
  • Anthony E. McDonald
    • 1
  • R. Guild Copeland
    • 1
  • Keith E. Barrett
    • 1
  • Cheryl R. Gourley
    • 1
  • R. K. Naviaux
    • 2
  1. 1.Department 1141MS 1413 Sandia National LaboratoriesAlbuquerque
  2. 2.Departments of Medicine and PediatricsUniversity of CaliforniaSan Diego

Personalised recommendations