Biomedical Microdevices

, Volume 7, Issue 4, pp 281–293 | Cite as

Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems

Article

Abstract

Polydimethylsiloxane (PDMS Sylgard® 184, Dow Corning Corporation) pre-polymer was combined with increasing amounts of cross-linker (5.7, 10.0, 14.3, 21.4, and 42.9 wt.%) and designated PDMS1, PDMS2, PDMS3, PDMS4, and PDMS5, respectively. These materials were processed by spin coating and subjected to common microfabrication, micromachining, and biomedical processes: chemical immersion, oxygen plasma treatment, sterilization, and exposure to tissue culture media. The PDMS formulations were analyzed by gravimetry, goniometry, tensile testing, nanoindentation, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Spin coating of PDMS was formulation dependent with film thickness ranging from 308 μm on PDMS1 to 171 μm on PDMS5 at 200 revolutions per minute (rpm). Ultimate tensile stress (UTS) increased from 3.9 MPa (PDMS1) to 10.8 MPa (PDMS3), and then decreased down to 4.0 MPa (PDMS5). Autoclave sterilization (AS) increased the storage modulus (σ) and UTS in all formulations, with the highest increase in UTS exhibited by PDMS5 (218%). PDMS surface hydrophilicity and micro-textures were generally unaffected when exposed to the different chemicals, except for micro-texture changes after immersion in potassium hydroxide and buffered hydrofluoric, nitric, sulfuric, and hydrofluoric acids; and minimal changes in contact angle after immersion in hexane, hydrochloric acid, photoresist developer, and toluene. Oxygen plasma treatment decreased the contact angle of PDMS2 from 109 to 60. Exposure to tissue culture media resulted in increased PDMS surface element concentrations of nitrogen and oxygen.

Keywords

polydimethylsiloxane PDMS Poly(dimethylsiloxane) mechanical properties micromachining microfabrication MEMS microsystems contact angle sterilization tensile strength structural properties nanotechnology nanosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Armani, C. Liu, and N. Aluru, 12th IEEE International Conference on MEMS, 222–227 (1999).Google Scholar
  2. R. Bashir, Advanced Drug Delivery Reviews 56, 1565–1586 (2004).CrossRefGoogle Scholar
  3. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H.Lo, Sensors and Actuators B: Chemical 97, 402–408 (2004).CrossRefGoogle Scholar
  4. J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, and J.P. Vacanti, Biomedical Microdevices 4, 167–175 (2002).CrossRefGoogle Scholar
  5. J. Brugger, G. Beljakovic, M. Despont, H. Biebuyck, N.F. de Rooij, and P. Vettiger, Sensors and Actuators A: Physical 70, 191–194 (1998).CrossRefGoogle Scholar
  6. S. Chung, J.K. Kim, K.C. Wang, D.-C.Han, and J.-K.Chang, Biomedical Microdevices 5, 311–321 (2003).CrossRefGoogle Scholar
  7. T. Deng, H. Wu, S.T. Brittain, and G.M. Whitesides, Analytical Chemistry 72, 3176–3180 (2000).Google Scholar
  8. T.A. Desai, Medical Engineering & Physics 22, 595–606 (2000).CrossRefGoogle Scholar
  9. M.S. Despa, K.W. Kelly, and J.R. Collier, Microsystems Technologies 6, 60–66 (1999).Google Scholar
  10. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Analytical Chemistry 70, 4974–4984 (1998).CrossRefGoogle Scholar
  11. K. Efimenko, W.E. Wallace, and J. Genzer, Journal of Colloid and Interface Science 254, 306–315 (2002).CrossRefGoogle Scholar
  12. L.A. Ferrara, A.J. Fleischman, E.C. Benzel, and S. Roy, Medical Engineering & Physics 25, 483–490 (2003).CrossRefGoogle Scholar
  13. J.L. Fritz and M.J. Owen, Journal of Adhesion 54, 33–45 (1995).CrossRefGoogle Scholar
  14. T. Fujii, Microelectronic Engineering 61–62, 907–914 (2002).Google Scholar
  15. H. Hillborg and U.W. Gedde, Polymer 39, 1991–1998 (1998).CrossRefGoogle Scholar
  16. T.A. Horbertt, B.D. Ratner, J.M. Schakenraad, and F.J. Schoen, Biomaterials Science: An Introduction to Materials in Medicine, (Academic Press, 1996), p. 133–146.Google Scholar
  17. Y. Itoh, Biomaterials 20, 2333–2342 (1999).Google Scholar
  18. B.-H.Jo, L.M. Van Lerberghe, K.M. Motsegood, and D.J. Beebe, Journal of Microelectromechanical Systems 9, 76–81 (2000).CrossRefGoogle Scholar
  19. R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, and G.M. Whitesides, Biomaterials 20, 2363–2376 (1999).CrossRefGoogle Scholar
  20. M.T. Khorasani, H. Mirzadeh, and P.G. Sammes, Radiation Physics and Chemistry 47, 881–888 (1996).CrossRefGoogle Scholar
  21. J.B. Kowalski and R.F. Morrissey, Biomaterials Science; An Introduction to Materials in Medicine, (Academic Press, Massachusetts, 1996), p. 415–420.Google Scholar
  22. E. Leclerc, Y. Sakai, T. Fujii, Biomedical Microdevices 5, 109–114 (2003).CrossRefGoogle Scholar
  23. J.N. Lee, X. Jiang, D. Ryan, and G.M. Whitesides, Langmuir 20, 11684–11691 (2004).Google Scholar
  24. J.N. Lee, C. Park, and G.M. Whitesides, Analytical Chemistry 75, 6544–6554 (2003).Google Scholar
  25. L.J. Lee, M.J. Madou, K.W. Koelling, S. Daunert, S. Lai, C.G. Koh, Y.-J.Juang, Y. Lu, and L. Yu, Biomedical Microdevices 3, 339–351 (2001).Google Scholar
  26. L. Lin, Y.T. Cheng, and C.J. Chiu, Microsystems Technologies 4, 113–116 (1998).CrossRefGoogle Scholar
  27. P. Linderholm and P. Asberg, 3D/PDMS Multilayer systems, Report, Linkoping University, Sweden, (2000).Google Scholar
  28. J.C. Lotters, W. Olthuls, P.H. Veltink, and P. Bergveld, Journal of Micromechanics and Microengineering 7, 145–147 (1997).Google Scholar
  29. C.H. Mastrangelo, M.A. Burns, and D.T. Burke, Proceedings of the IEEE 86, 1769–1787 (1998).CrossRefGoogle Scholar
  30. A. Mata, A novel form of natural rubber foam for the prevention and treatment of the diabetic foot, Masters Thesis (1999), University of Strathclyde, Glasgow, Scotland, UK.Google Scholar
  31. A. Mata, C. Boehm, A.J. Fleischman, G. Muschler, and S. Roy, Biomedical Microdevices 4, 267–275 (2002a).CrossRefGoogle Scholar
  32. A. Mata, C. Boehm, A.J. Fleischman, G. Muschler, and S. Roy, Journal of Biomedical Materials Research 62, 499–506 (2002b).CrossRefGoogle Scholar
  33. A. Mata, X. Su, A.J. Fleischman, S. Roy, B.A. Banks, S.K. Miller, and R.J. Midura, IEEE Transactions on NanoBioscience 2, 287–294 (2003).CrossRefGoogle Scholar
  34. Material Safety Data Sheet (MSDS): Sylgard (R) 184 Silicone Elastomer, Dow Corning Corporation. http://www.dowcorning.com/applications/product_find-er/pf_details.asp?l1=009&pg=00000029&prod=01064291&type =PROD
  35. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, and G.M. Whitesides, Electrophoresis 21, 27–40 (2000).CrossRefGoogle Scholar
  36. J.C. McDonald and G.M. Whitesides, Accounts of Chemical Research 35, 491–499 (2002).CrossRefGoogle Scholar
  37. T. Murakami, S. Kuroda, and Z. Osawa, Journal of Colloid and Interface Science 202, 37–44 (1998).CrossRefGoogle Scholar
  38. J.M.K. Ng, I. Gitlin, A.D. Stroock, and G.M. Whitesides, Electrophoresis 23, 3461–3473 (2002).CrossRefGoogle Scholar
  39. M. Nowicki, A. Richter, B. Wolf, H. Kaczmarek, Polymer 44, 6599–6606 (2003).CrossRefGoogle Scholar
  40. H.-K.Oh, K.-H.Song, K.-R.Lee, J.-M.Rim, Polymer 42, 6305–6312 (2001).Google Scholar
  41. M. Paranjape, J. Garra, S. Brida, T. Schneider, R. White, J. Currie, Sensors and Actuators A: Physical 104, 195–204 (2003).CrossRefGoogle Scholar
  42. S.R. Quake and A. Scherer, Science 290, 1536–1540 (2000).CrossRefGoogle Scholar
  43. K. Rau, R. Singh, and E. Goldberg, Materials Research Innovations 5, 151–161 (2002).Google Scholar
  44. K.J. Rebello, Proceedings of IEEE 92, 43–55 (2004).CrossRefGoogle Scholar
  45. S. Roy, L.A. Ferrara, A.J. Fleischman, and E.C. Benzel, Neurosurgery 49, 779–798 (2001).Google Scholar
  46. J.T. Santini, M.J. Cima, and R. Langer, Nature 397, 335–338 (1999).Google Scholar
  47. B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, V.-M.Graubner, O. Nuyken, Surface Science 532–535, 1067–1071 (2003).Google Scholar
  48. S.L. Tao and T.A. Desai, Advanced Drug Delivery Reviews 55, 315–328 (2003).CrossRefGoogle Scholar
  49. J.E. Tiffany, Spin coating of photoresist: interfacial effects, Master of Science Thesis (1998), Arizona State University, Tempe, Arizona, USA.Google Scholar
  50. M.A. Unger, H.-P.Chou, T. Thorsen, A. Scherer, and S.R. Quake, Science 288, 113–116 (2000).CrossRefGoogle Scholar
  51. S.A. Visser, R.W. Hergenrother, and S.L. Cooper, Polymers. Biomaterials Science, (Academic Press, 1996), p. 50–60.Google Scholar
  52. G. Wei, B. Bhushan, N. Ferrell, and D. Hansford, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, 811–819 (2005).CrossRefGoogle Scholar
  53. C.C. White, M.R. Vanlandingham, P.L. Drzal, N.-K.Chang, and S.-H.Chang, Journal of Polymer Science Part B: Polymer Physics 43, 1812–1824 (2005).CrossRefGoogle Scholar
  54. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D.E. Ingber, Annual Review of Biomedical Engineering 3, 335–373 (2001).CrossRefGoogle Scholar
  55. G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, and A. Majumdar, Nature Biotechnology 19, 856–860 (2001).CrossRefGoogle Scholar
  56. Y. Xia and G.M. Whitesides, Angewandte Chemie International Edition 37, 550–575 (1998).CrossRefGoogle Scholar
  57. B. Ziaie, A. Baldi, M. Lei, Y. Gu, and R.A. Siegel, Advanced Drug Delivery Reviews 56, 145–172 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemical and Biomedical EngineeringCleveland State UniversityCleveland
  2. 2.BioMEMS Laboratory, Department of Biomedical Engineering, Lerner Research InstituteThe Cleveland Clinic FoundationCleveland

Personalised recommendations