Biomedical Microdevices

, Volume 7, Issue 3, pp 247–251 | Cite as

Detecting Common Gene Expression Patterns in Multiple Cancer Outcome Entities

Article

Abstract

Most oncological microarray studies focus on molecular distinctions in different cancer entities. Recently, researchers started using microarrays for investigating molecular commonalities of multiple cancer types. This poses novel bioinformatics challenges.

In this paper we describe a method that detects common molecular mechanisms in different cancer entities. The method extends previously described concepts by introducing Meta-Analysis Pattern Matches. In an analysis of four prognostic cancer studies, involving breast cancer, leukemia, and mesothelioma, we are able to identify 42 genes that show consistent up- or down-regulation in patients with a poor disease outcome. These genes complement the set of previously published candidates for universal prognostic markers in cancer.

Keywords

molecular cancer mechanisms meta-analysis computational diagnostics microarrays bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affymetrix: 2001a, Microarray suite user guide, version 5.0.Google Scholar
  2. A. Alizadeh, M. Eisen, R. Davis, C. Ma, I. Losses, A. Rosenwald, et al., Nature 403, 503 (2000).CrossRefPubMedGoogle Scholar
  3. S. Bandyopadhyay, S. Pai, S. Gross, S. Hirota, S. Hosobe, K. Miura, K. Saito, T. Commes, S. Hayashi, M. Watabe, and K. Watabe, Cancer Res 63(8), 1731 (2003).PubMedGoogle Scholar
  4. D. Bennin, A. Don, T. Brake, J. McKenzie, H. Rosen-baum, L. Ortiz, A. DePaoli-Roach, and M. Horne, J Biol Chem 277(30), 27449 (2002).CrossRefPubMedGoogle Scholar
  5. S. Chiaretti, X. Li, R. Gentleman, A. Vitale, M. Vignetti, F. Mandelli, J. Ritz, and R. Foa, Blood 103(7), 2771 (2004).CrossRefPubMedGoogle Scholar
  6. S. Ghosh, M. May, and E. Kopp, Annu Rev Immunol 16, 225 (1998).PubMedGoogle Scholar
  7. G. Gordon, R. Jensen, L. Hsiao, S. Gullans, J. Blumenstock, W. Richards, M. Jaklitsch, D. Sugarbaker, and R. Bueno, Journal of the National Cancer Institute 95(8), 598 (2003).PubMedGoogle Scholar
  8. J. Harper, J. Yuan, J. Tan, I. Visan, and C. Guidos, Clin Genet 64(6), 461 (2003).CrossRefPubMedGoogle Scholar
  9. E. Huang, S. Cheng, H. Dressman, J. Pittman, M. Tsou, C. Horng, A. Bild, E. Iversen, M.L. M, C. Chen, M.W. M, J. Nevins, and A. Huang, Lancet. 361(9369), 1590 (2003).CrossRefPubMedGoogle Scholar
  10. W. Huber, A. von Heydebreck, H. Sueltmann, A. Poustka, and M. Vingron, Bioinformatics 18 Suppl 1, 96 (2002).Google Scholar
  11. R. Irizarry, B. Hobbs, F. Collin, Y. Beazer-Barclay, K. Antonellis, U. Scherf, and T. Speed, Bio-statistics 4(2), 249 (2003).Google Scholar
  12. J. Kuai, E. Nickbarg, J. Wooters, Y. Qiu, J. Wang, and L. Lin, J Biol Chem 278(16), 14363 (2003).CrossRefPubMedGoogle Scholar
  13. C. Lin, A. Lau, C. Yeh, C. Chang, and T. Lue, DNA Cell Biol 19(1), 1 (2000).CrossRefPubMedGoogle Scholar
  14. E. Moon and A. Lerner, Blood 101(10), 4122 (2003).CrossRefPubMedGoogle Scholar
  15. A. Rao, C. Luo, and P. Hogan, Annu Rev Immunol 15, 707 (1997).CrossRefPubMedGoogle Scholar
  16. D. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey, and A. Chinnaiyan, Proc Natl Acad Sci USA 101(25), 9309 (2004).CrossRefPubMedGoogle Scholar
  17. E. Segal, N. Friedman, D. Koller, and A. Regev, Nature Genetics 36(10), 1090 (2004).PubMedGoogle Scholar
  18. H. Shimada, Y. Nabeya, S. Okazumi, H. Matsubara, K. Kadomatsu, T. Muramatsu, S. Ikematsu, S. Sakuma, and T. Ochiai, Oncol Rep 10(2), 411 (2003).PubMedGoogle Scholar
  19. M. Smid and C.L.D.G. Jenster, Bioinformatics 19(16), 2065 (2003).CrossRefPubMedGoogle Scholar
  20. M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, et al., Proc. Natl. Acad. Sci. USA 98, 11462 (2001).CrossRefPubMedGoogle Scholar
  21. E. Yeoh, M. Ross, S. Shurtleff, W. Williams, D. Patel, R. Mahfouz, P. Behm, et al., Cancer Cell 1(2), 133 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Computational Diagnostics Group, Department of Computational Molecular BiologyMPI for Molecular GeneticsBerlinGermany
  2. 2.State Key Laboratory of BioelectronicsSoutheast UniversityNanjingP. R. China

Personalised recommendations