Advertisement

Analysis of an approximation to a fractional extension problem

  • Joshua L. PadgettEmail author
Article
  • 10 Downloads

Abstract

The purpose of this article is to study an approximation to an abstract Bessel-type problem, which is a generalization of the extension problem associated with fractional powers of the Laplace operator. Motivated by the success of such approaches in the analysis of time-stepping methods for abstract Cauchy problems, we adopt a similar framework herein. The proposed method differs from many standard techniques, as we approximate the true solution to the abstract problem, rather than solve an associated discrete problem. The numerical method is shown to be consistent, stable, and convergent in an appropriate Banach space. These results are built upon well understood results from semigroup theory. Numerical experiments are provided to demonstrate the theoretical results.

Keywords

Fractional diffusion Nonlocal operators Singular equations Degenerate equations Bessel equations Semigroup methods 

Mathematics Subject Classification

65J10 65M12 65R20 65M99 

Notes

Acknowledgements

This work was supported by the NSF Grant Number 1903450. The author would like to thank Akif Ibraguimov, of Texas Tech University, for introducing this problem to them. The author is also thankful for Akif’s time and insightful suggestions that greatly improved the quality of the work herein. Finally, the author is thankful to the reviewers who provided numerous useful suggestions that greatly improved the presentation of the numerical experiments in Sect. 5.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, Chelmsford (1965)zbMATHGoogle Scholar
  2. 2.
    Antil, H., Otárola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53(6), 3432–3456 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arendt, W., Elst, A.F.M.T., Warma, M.: Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Commun. Partial Differ. Equ. 43(1), 1–24 (2018).  https://doi.org/10.1080/03605302.2017.1363229 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin (2010)CrossRefGoogle Scholar
  5. 5.
    Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142(2), 235–278 (2019)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Budd, C.J., Iserles, A.: Geometric integration: numerical solution of differential equations on manifolds. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1754), 945–956 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007).  https://doi.org/10.1080/03605300600987306 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)CrossRefGoogle Scholar
  9. 9.
    Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys. 293, 339–358 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cushman, J.H., Ginn, T.R.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Transp. Porous Media 13(1), 123–138 (1993)CrossRefGoogle Scholar
  11. 11.
    Deimling, K.: Nonlinear Functional Analysis. Courier Corporation, Chelmsford (2010)zbMATHGoogle Scholar
  12. 12.
    D‘Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, Berlin (2002)zbMATHGoogle Scholar
  14. 14.
    Galé, J.E., Miana, P.J., Stinga, P.R.: Extension problem and fractional operators: semigroups and wave equations. J. Evol. Equ. 13(2), 343–368 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)zbMATHGoogle Scholar
  16. 16.
    Hansen, E., Henningsson, E.: A convergence analysis of the Peaceman–Rachford scheme for semilinear evolution equations. SIAM J. Numer. Anal. 51(4), 1900–1910 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, Berlin (2006)Google Scholar
  18. 18.
    Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge University Press, New York (2008)CrossRefGoogle Scholar
  20. 20.
    Jones, T., Gonzalez, L.P., Guha, S., Sheng, Q.: A continuing exploration of a decomposed compact method for highly oscillatory wave problems. J. Comput. Appl. Math. 299, 207–220 (2016).  https://doi.org/10.1016/j.cam.2015.11.044. Recent Advances in Numerical Methods for Systems of Partial Differential EquationsMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lumer, G., Phillips, R.S.: Dissipative operators in a Banach space. Pac. J. Math. 11(2), 679–698 (1961)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Martinez, C., Sanz, M.: The Theory of Fractional Powers of Operators, vol. 187. Elsevier, Amsterdam (2001)zbMATHGoogle Scholar
  23. 23.
    Meichsner, J., Seifert, C.: Fractional powers of non-negative operators in Banach spaces via the Dirichlet-to-Neumann operator. arXiv preprint arXiv:1704.01876 (2017)
  24. 24.
    Munthe-Kaas, H.Z., Føllesdal, K.K.: Lie–Butcher series, geometry, algebra and computation. In: Discrete Mechanics, Geometric Integration and Lie–Butcher Series, pp. 71–113. Springer (2018)Google Scholar
  25. 25.
    Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Padgett, J.L., Sheng, Q.: On the positivity, monotonicity, and stability of a semi-adaptive LOD method for solving three-dimensional degenerate Kawarada equations. J. Math. Anal. Appl. 439, 465–480 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Padgett, J.L., Sheng, Q.: Numerical solution of degenerate stochastic kawarada equations via a semi-discretized approach. Appl. Math. Comput. 325, 210–226 (2018).  https://doi.org/10.1016/j.amc.2017.12.034 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Söderlind, G.: The logarithmic norm. history and modern theory. BIT Numer. Math. 46(3), 631–652 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010).  https://doi.org/10.1080/03605301003735680 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA

Personalised recommendations