Advertisement

Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization

  • Shengfeng ZhuEmail author
  • Xianliang Hu
  • Qifeng Liao
Article
  • 27 Downloads

Abstract

This paper concerns the accuracy of Galerkin finite element approximations to two types of shape gradients for eigenvalue optimization. Under certain regularity assumptions on domains, a priori error estimates are obtained for the two approximate shape gradients. Our convergence analysis shows that the volume integral formula converges faster and offers higher accuracy than the boundary integral formula. Numerical experiments validate the theoretical results for the problem with a pure Dirichlet boundary condition. For the problem with a pure Neumann boundary condition, the boundary formulation numerically converges as fast as the distributed type.

Keywords

Shape optimization Shape gradient Eigenvalue problem Finite element Error estimate Multiple eigenvalue 

Mathematics Subject Classification

49Q10 65N25 65N30 

Notes

Acknowledgements

This work was supported in part by Natural Science Foundation of Shanghai (Grant No. 19ZR1414100), Science and Technology Commission of Shanghai Municipality (No. 18dz2271000) and the National Natural Science Foundation of China under Grants 11201153, 11571115 and 11601329.

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  2. 2.
    Allaire, G., Aubry, S., Jouve, F.: Eigenfrequency optimization in optimal design. Comput. Methods Appl. Mech. Eng. 190, 3565–3579 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Antunes, P., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154, 235–257 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Babuska, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Babuska, I., Osborn, J.: Eigenvalue Problems. Handbook of Numerical Analysis II, pp. 641–787. North-Holland, Amsterdam (1991)zbMATHGoogle Scholar
  6. 6.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, New York (2003)zbMATHGoogle Scholar
  7. 7.
    Berggren, M.: A unified discrete-continuous sensitivity analysis method for shape optimization. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Përiaux, J., Pironneau, O. (eds.) Applied and Numerical Partial Differential Equations, pp. 25–39. Springer, New York (2010)CrossRefGoogle Scholar
  8. 8.
    Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations Appl. Birkhäuser Boston Inc, Boston (2005)CrossRefGoogle Scholar
  11. 11.
    Burger, M., Osher, S.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16, 263–301 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. SIAM, Philadelphia (2011)CrossRefGoogle Scholar
  13. 13.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)CrossRefGoogle Scholar
  14. 14.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2011)zbMATHGoogle Scholar
  15. 15.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)CrossRefGoogle Scholar
  16. 16.
    Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, vol. 33, Mém. Sav. Étrang. (1907)Google Scholar
  17. 17.
    Haug, E.J., Rousselet, B.: Design sensitivity analysis in structural mechanics, II. Eigenvalue variation. J. Struct. Mech. 8, 161–186 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hecht, F., Pironneau, O., Hyaric, A.L., Ohtsuka, K.: Freefem++ manual, (2006)Google Scholar
  19. 19.
    Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Frontiers in Mathematics. Birkhauser, Basel (2006)CrossRefGoogle Scholar
  20. 20.
    Hintermuller, M., Laurain, A., Yousept, I.: Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model. Inverse Probl 31, 065006 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT Numer. Math. 55, 459–485 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kao, C.-Y., Su, S.: Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54, 492–512 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kiniger, B.: Error estimates for finite element methods in shape optimization. PhD thesis (2015)Google Scholar
  24. 24.
    Knyazev, A., Osborn, J.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43, 2647–2667 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Model. Numer. Anal. 50, 1241–1267 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, J., Zhu, S.: Shape identification in Stokes flow with distributed shape gradients. Appl. Math. Lett. 95, 165–171 (2019)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liu, C., Zhu, S.: A semi-implicit binary level set method for source reconstruction problems. Int. J. Numer. Anal. Model. 8, 410–426 (2011)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  29. 29.
    Osher, S., Santosa, F.: Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288 (2001)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Oudet, E.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM Control Optim. Calc. Var. 10, 315–330 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Paganini, A.: Numerical Shape Optimization with Finite Elements. ETH Dissertation 23212. ETH Zurich (2016).  https://doi.org/10.3929/ethz-a-010579469
  32. 32.
    Pironneau, O.: Opitmal Shape Design for Elliptic Systems. Springer Series in Computational Physics. Springer, New York (1984)CrossRefGoogle Scholar
  33. 33.
    Rousselet, B.: Shape design sensitivity of a membrane. J. Optim. Theory Appl. 40, 595–623 (1983)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53, 3319–3338 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  36. 36.
    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, New York (2007)zbMATHGoogle Scholar
  37. 37.
    Wu, S., Hu, X., Zhu, S.: A multi-mesh finite element method for phase-field based photonic band structure optimization. J. Comput. Phys. 357, 324–337 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhan, X.: Matrix Theory, Graduate Studies in Mathematics, vol. 147. American Mathematical Society, Providence (2013)Google Scholar
  39. 39.
    Zhu, S., Wu, Q., Liu, C.: Variational piecewise constant level set methods for shape optimization of a two-density drum. J. Comput. Phys. 229, 5062–5089 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhu, S., Wu, Q., Liu, C.: Shape and topology optimization for elliptic boundary value problems using a piecewise constant level set method. Appl. Numer. Math. 61, 752–767 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhu, S.: Effective shape optimization of Laplace eigenvalue problems using domain expressions of Eulerian derivatives. J. Optim. Theory Appl. 176, 17–34 (2018)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhu, S., Hu, X., Wu, Q.: A level set method for shape optimization in semilinear elliptic problems. J. Comput. Phys. 355, 104–120 (2018)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Zhu, S., Gao, Z.: Convergence analysis of mixed finite element approximations to shape gradients in the Stokes equation. Comput. Methods Appl. Mech. Eng. 343, 127–150 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Data Mathematics and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, School of Mathematical SciencesEast China Normal UniversityShanghaiChina
  2. 2.School of Mathematical SciencesZhejiang UniversityHangzhouChina
  3. 3.School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations