A curl-conforming weak Galerkin method for the quad-curl problem
Article
First Online:
- 167 Downloads
Abstract
The quad-curl problem arises from the inverse electromagnetic scattering theory and magnetohydrodynamics. In this paper, a weak Galerkin method is proposed using the curl-conforming Nédélec elements. On one hand, the method avoids the construction of the curl–curl conforming elements and thus solves a smaller linear system. On the other hand, it is much simpler than the case of using the fully discontinuous elements. For polynomial spaces of order k, error estimates of \(O(h^{k-1})\) in the energy norm and of \(O(h^{k})\) in the \(H(\text {curl})\) norm are established, which are validated by the numerical examples.
Keywords
Quad-curl problem WG methods Edge elementsMathematics Subject Classification
65N30 35Q60 65N15 35B45Notes
References
- 1.Brenner, S.C., Monk, P., Sun, J.: C\(^0\)IPG for the biharmonic eigenvalue problem. Spectral and high order methods for partial differential equations. Lect. Notes Comput. Sci. Eng. 106, 3–15 (2015)CrossRefGoogle Scholar
- 2.Brenner, S.C., Sun, J., Sung, L.: Hodge decomposition methods for a quad-curl problem on planar domains. J. Sci. Comput. 73(2–3), 495–513 (2017)MathSciNetCrossRefGoogle Scholar
- 3.Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl. 26(4), 074004 (2010)MathSciNetCrossRefGoogle Scholar
- 4.Cakoni, F., Haddar, H.: A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Probl. Imaging 1(3), 443–456 (2007)MathSciNetCrossRefGoogle Scholar
- 5.Chen, L., Huang, X.: Differential complexes, Helmholtz decompositions, and decoupling of mixed methods. (2016). arXiv preprint. arXiv:1611.03936
- 6.Du, Y., Zhang, Z.: A numerical analysis of the weak Galerkin method for the Helmholtz equation with high wave number. Commun. Comput. Phys. 22(1), 133–156 (2017)MathSciNetCrossRefGoogle Scholar
- 7.Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)MathSciNetCrossRefGoogle Scholar
- 8.Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30(6), 565–578 (2012)MathSciNetCrossRefGoogle Scholar
- 9.Hong, Q., Wang, F., Wu, S., Xu, J.: A unified study of continuous and discontinuous Galerkin methods. Sci. China. Math. 62(1), 1–32 (2019)MathSciNetCrossRefGoogle Scholar
- 10.Kikuchi, F.: Mixed formulations for finite element analysis of magnetostatic and electrostatic problems. Japan J. Appl. Math. 6(2), 209–221 (1989)MathSciNetCrossRefGoogle Scholar
- 11.Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
- 12.Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34, B247–B264 (2012)MathSciNetCrossRefGoogle Scholar
- 13.Mu, L., Wang, J., Ye, X., Zhang, S.: A \({C}^0\)-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 59(2), 473–495 (2012)CrossRefGoogle Scholar
- 14.Mu, L., Wang, J., Ye, X., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65, 363–386 (2015)MathSciNetCrossRefGoogle Scholar
- 15.Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35(1), 315–341 (1980)MathSciNetCrossRefGoogle Scholar
- 16.Nicaise, S.: Singularities of the quad-curl problem. J. Differ. Equations 264, 5025–5069 (2018)MathSciNetCrossRefGoogle Scholar
- 17.Sun, J.: A mixed FEM for the quad-curl eigenvalue problem. Numer. Math. 132(1), 185–200 (2016)MathSciNetCrossRefGoogle Scholar
- 18.Sun, J., Xu, L.: Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems. Inverse Probl. 29(10), 104013 (2013)MathSciNetCrossRefGoogle Scholar
- 19.Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. Chapman and Hall/CRC, Boca Raton, FL (2016)CrossRefGoogle Scholar
- 20.Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241(15), 103–115 (2013)MathSciNetCrossRefGoogle Scholar
- 21.Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83(289), 2101–2126 (2014)MathSciNetCrossRefGoogle Scholar
- 22.Zhai, Q., Xie, H., Zhang, R., Zhang, Z.: The weak Galerkin method for elliptic eigenvalue problems. Commun. Comput. Phys. 26(1), 160–191 (2019)MathSciNetCrossRefGoogle Scholar
- 23.Zhang, S.: Mixed schemes for quad-curl equations. ESAIM: M2AN 52(1), 147–161 (2018)MathSciNetCrossRefGoogle Scholar
- 24.Zhang, S.: Regular decomposition and a framework of order reduced methods for fourth order problems. Numerische Mathematik 138, 241–271 (2018)MathSciNetCrossRefGoogle Scholar
- 25.Zheng, B., Xu, J.: A nonconforming finite element method for fourth order curl equations in \(\mathbb{R}^3\). Math. Comp. 80(276), 1871–1886 (2011)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature B.V. 2019