Unbiased predictive risk estimation of the Tikhonov regularization parameter: convergence with increasing rank approximations of the singular value decomposition
Abstract
The truncated singular value decomposition may be used to find the solution of linear discrete ill-posed problems in conjunction with Tikhonov regularization and requires the estimation of a regularization parameter that balances between the sizes of the fit to data function and the regularization term. The unbiased predictive risk estimator is one suggested method for finding the regularization parameter when the noise in the measurements is normally distributed with known variance. In this paper we provide an algorithm using the unbiased predictive risk estimator that automatically finds both the regularization parameter and the number of terms to use from the singular value decomposition. Underlying the algorithm is a new result that proves that the regularization parameter converges with the number of terms from the singular value decomposition. For the analysis it is sufficient to assume that the discrete Picard condition is satisfied for exact data and that noise completely contaminates the measured data coefficients for a sufficiently large number of terms, dependent on both the noise level and the degree of ill-posedness of the system. A lower bound for the regularization parameter is provided leading to a computationally efficient algorithm. Supporting results are compared with those obtained using the method of generalized cross validation. Simulations for two-dimensional examples verify the theoretical analysis and the effectiveness of the algorithm for increasing noise levels, and demonstrate that the relative reconstruction errors obtained using the truncated singular value decomposition are less than those obtained using the singular value decomposition.
Keywords
Inverse problems Tikhonov regularization Unbiased predictive risk estimation Regularization parameterMathematics Subject Classification
65F10Notes
References
- 1.Abascal, J.-F.P.J., Arridge, S.R., Bayford, R.H., Holder, D.S.: Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function. Physiol. Meas. 29, 1319–1334 (2008)CrossRefGoogle Scholar
- 2.Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Elsevier, Amsterdam (2013)zbMATHGoogle Scholar
- 3.Bakushinskii, A.B.: Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion. USSR Comput. Math. Math. Phys. 24(4), 181182 (1984)MathSciNetCrossRefGoogle Scholar
- 4.Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comput. Simul. 81, 1795–1841 (2011)MathSciNetCrossRefGoogle Scholar
- 5.Björck, A.: Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia (1996)CrossRefGoogle Scholar
- 6.Chung, J., Nagy, J.G., O’Leary, D.P.: A weighted GCV method for Lanczos hybrid regularization. Electron. Trans. Numer. Anal. 28, 149–167 (2008)MathSciNetzbMATHGoogle Scholar
- 7.Drineas, P., Mahoney, M.W.: RandNLA: randomized numerical linear algebra. Commun. ACM 59, 80–90 (2016)CrossRefGoogle Scholar
- 8.Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlós, T.: Faster least squares approximation. Numer. Math. 117, 219–249 (2011)MathSciNetCrossRefGoogle Scholar
- 9.Fenu, C., Reichel, L., Rodrigues, G., Sadok, H.: GCV for Tikhonov regularization by partial SVD. BIT Numer. Math. 57, 1019–1039 (2017)MathSciNetCrossRefGoogle Scholar
- 10.Gazzola, S., Hansen, P.C., Nagy, J.G.: IR tools: a MATLAB package of iterative regularization methods and large-scale test problems. Numer. Algorithms. https://doi.org/10.1007/s11075-018-0570-7 (2018)MathSciNetCrossRefGoogle Scholar
- 11.Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)MathSciNetCrossRefGoogle Scholar
- 12.Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Press, Baltimore (1996)zbMATHGoogle Scholar
- 13.Gower, R.M., Richtárik, P.: Randomized iterative methods for linear systems. SIAM J. Matrix Anal. Appl. 36, 1660–1690 (2015)MathSciNetCrossRefGoogle Scholar
- 14.Hämäläinen, K., Harhanen, L., Kallonen, A., Kujanpää, A., Niemi, E., Siltanen, S.: Tomographic X-ray data of a walnut. arXiv:1502.04064 (2015)
- 15.Hämarik, U., Palm, R., Raus, T.: On minimizationstrategies for choice of the regularization parameter in ill-posed problems. Numer. Funct. Anal. Optim. 30, 924–950 (2009)MathSciNetCrossRefGoogle Scholar
- 16.Hämarik, U., Palm, R., Raus, T.: A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. J. Comput. Appl. Math. 236, 2146–2157 (2012)MathSciNetCrossRefGoogle Scholar
- 17.Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)MathSciNetzbMATHGoogle Scholar
- 18.Hansen, J.K., Hogue, J.D., Sander, G.K., Renaut, R.A., Popat, S.C.: Non-negatively constrained least squares and parameter choice by the residual periodogram for the inversion of electrochemical impedance spectroscopy data. J. Comput. Appl. Math. 278, 52–74 (2015)MathSciNetCrossRefGoogle Scholar
- 19.Hansen, P.C.: The discrete Picard condition for discrete ill-posed problems. BIT Numer. Math. 30, 658–672 (1990)MathSciNetCrossRefGoogle Scholar
- 20.Hansen, P.C.: Regularization tools—a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 46, 189–194 (1994)MathSciNetCrossRefGoogle Scholar
- 21.Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied Mathematics, Philadelphia (1998)CrossRefGoogle Scholar
- 22.Hansen, P.C.: Discrete Inverse Problems. Society for Industrial and Applied Mathematics, Philadelphia (2010)CrossRefGoogle Scholar
- 23.Hofmann, B.: Regularization for Applied Inverse and Ill-posed Problems: A Numerical Approach, Teubner-Texte zur Mathematik. Teubner, B.G., Berlin (1986)CrossRefGoogle Scholar
- 24.Levin, E., Meltzer, A.Y.: Estimation of the regularization parameter in linear discrete ill-posed problems using the Picard parameter. SIAM J. Sci. Comput. 39, A2741–A2762 (2017)MathSciNetCrossRefGoogle Scholar
- 25.Lin, Y., Wohlberg, B., Guo, H.: UPRE method for total variation parameter selection. Signal Process. 90, 2546–2551 (2010)CrossRefGoogle Scholar
- 26.Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends® Mach. Learn. 3, 123–224 (2011)zbMATHGoogle Scholar
- 27.Mead, J.L., Renaut, R.A.: A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems. Inverse Probl. 25, 025002 (2009)MathSciNetCrossRefGoogle Scholar
- 28.Meng, X., Saunders, M.A., Mahoney, M.W.: LSRN: a parallel iterative solver for strongly over- or underdetermined systems. SIAM J. Sci. Comput. 36, C95–C118 (2014)MathSciNetCrossRefGoogle Scholar
- 29.Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 7, 414–417 (1966)MathSciNetzbMATHGoogle Scholar
- 30.Renaut, R.A., Horst, M., Wang, Y., Cochran, D., Hansen, J.: Efficient estimation of regularization parameters via downsampling and the singular value expansion. BIT Numer. Math. 57, 499–529 (2017)CrossRefGoogle Scholar
- 31.Renaut, R.A., Vatankhah, S., Ardestani, V.E.: Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV for projected systems. SIAM J. Sci. Comput. 39, B221–B243 (2017)MathSciNetCrossRefGoogle Scholar
- 32.Rokhlin, V., Tygert, M.: A fast randomized algorithm for overdetermined linear least-squares regression. Proc. Natl. Acad. Sci. 105, 13212–13217 (2008)MathSciNetCrossRefGoogle Scholar
- 33.Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9, 1135–1151 (1981)MathSciNetCrossRefGoogle Scholar
- 34.Taroudaki, V., O’Leary, D.P.: Near-optimal spectral filtering and error estimation for solving ill-posed problems. SIAM J. Sci. Comput. 37, A2947–A2968 (2015)MathSciNetCrossRefGoogle Scholar
- 35.Toma, A., Sixou, B., Peyrin, F.: Iterative choice of the optimal regularization parameter in tv image restoration. Inverse Probl. Imaging 9, 1171 (2015)MathSciNetCrossRefGoogle Scholar
- 36.Vatankhah, S., Ardestani, V.E., Renaut, R.A.: Automatic estimation of the regularization parameter in 2D focusing gravity inversion: application of the method to the Safo manganese mine in the northwest of Iran. J. Geophys. Eng. 11, 045001 (2014)CrossRefGoogle Scholar
- 37.Vatankhah, S., Ardestani, V.E., Renaut, R.A.: Application of the \(\chi ^2\) principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion. Geophys. J. Int. 200, 265–277 (2015)CrossRefGoogle Scholar
- 38.Vatankhah, S., Renaut, R.A., Ardestani, V.E.: 3-D projected \(\ell _1\) inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation. Geophys. J. Int. 210, 1872–1887 (2017)CrossRefGoogle Scholar
- 39.Vatankhah, S., Renaut, R.A., Ardestani, V.E.: A fast algorithm for regularized focused 3-D inversion of gravity data using the randomized SVD. Geophysics (2018)Google Scholar
- 40.Vatankhah, S., Renaut, R.A., Ardestani, V.E.: Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition. Geophys. J. Int. 213, 695–705 (2018)CrossRefGoogle Scholar
- 41.Vogel, C.: Computational Methods for Inverse Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)CrossRefGoogle Scholar