Explicit computational wave propagation in micro-heterogeneous media

  • Roland Maier
  • Daniel Peterseim


Explicit time stepping schemes are popular for linear acoustic and elastic wave propagation due to their simple nature which does not require sophisticated solvers for the inversion of the stiffness matrices. However, explicit schemes are only stable if the time step size is bounded by the mesh size in space subject to the so-called CFL condition. In micro-heterogeneous media, this condition is typically prohibitively restrictive because spatial oscillations of the medium need to be resolved by the discretization in space. This paper presents a way to reduce the spatial complexity in such a setting and, hence, to enable a relaxation of the CFL condition. This is done using the Localized orthogonal decomposition method as a tool for numerical homogenization. A complete convergence analysis is presented with appropriate, weak regularity assumptions on the initial data.


Explicit time stepping Hyperbolic equation Heterogeneous media Numerical homogenization Multiscale method 

Mathematics Subject Classification

65M12 65M60 35L05 



The authors acknowledge support by Deutsche Forschungsgemeinschaft in the Priority Program 1748 Reliable simulation techniques in solid mechanics (PE2143/2-2). The authors thank the Hausdorff Institute for Mathematics in Bonn for the kind hospitality during the trimester program on multiscale problems in 2017.


  1. 1.
    Abdulle, A., Grote, M.J.: Finite element heterogeneous multiscale method for the wave equation. Multiscale Model. Simul. 9(2), 766–792 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp. 86(304), 549–587 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Altmann, R., Chung, E., Maier, R., Peterseim, D., Pun, S.M.: Computational multiscale methods for linear heterogeneous poroelasticity. ArXiv e-prints 1801.00615 (2018)
  4. 4.
    Arjmand, D., Runborg, O.: Analysis of heterogeneous multiscale methods for long time wave propagation problems. Multiscale Model. Simul. 12(3), 1135–1166 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite elements. Contemp. Math. 180, 9–14 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)zbMATHGoogle Scholar
  7. 7.
    Brown, D., Gallistl, D.: Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wavenumber explicit bounds. ArXiv e-prints 1608.04243 (2016)
  8. 8.
    Brown, D., Gallistl, D., Peterseim, D.: Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In: Meshfree Methods for Partial Differential Equations VIII, Lecture Notes on Computer Science and Engineering, vol. 115, pp. 85–115. Springer, Cham (2017)CrossRefGoogle Scholar
  9. 9.
    Christiansen, S.H.: Foundations of finite element methods for wave equations of Maxwell type. Applied Wave Mathematics, pp. 335–393. Springer, Berlin (2009)CrossRefGoogle Scholar
  10. 10.
    Weinan, E., Björn, E.: The heterogeneous multi-scale method for homogenization problems. In: Engquist, B., Runborg, O., Lötstedt, P. (eds.) Multiscale methods in science and engineering. Lecture notes in computational science and engineering, vol. 44, pp. 89–110. Springer, Berlin, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Engquist, B., Holst, H., Runborg, O.: Multi-scale methods for wave propagation in heterogeneous media. Commun. Math. Sci. 9(1), 33–56 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Engquist, B., Holst, H., Runborg, O.: Multiscale methods for wave propagation in heterogeneous media over long time. In: Numerical Analysis of Multiscale Computations, Lecture Notes on Computer Science and Engineering, vol. 82, pp. 167–186. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  14. 14.
    Ern, A., Guermond, J.L.: Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51(4), 1367–1385 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence (2010)Google Scholar
  16. 16.
    Gallistl, D., Peterseim, D.: Stable multiscale Petrov–Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. 295, 1–17 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hellman, F.: Gridlod. (2017). GitHub repository, commit 3e9cd20970581a32789aa1e21d7ff3f7e8f0b334
  18. 18.
    Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Joly, P.: Variational methods for time-dependent wave propagation problems. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds.) Topics in computational wave propagation. Lecture notes in computational science and engineering, vol. 31, pp. 201–264. Springer, Berlin, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Kornhuber, R., Peterseim, D., Yserentant, H.: An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comp. 87, 2765–2774 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3), 1017–1036 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Oswald, P.: On a BPX-preconditioner for P1 elements. Computing 51(2), 125–133 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Owhadi, H., Zhang, L.: Numerical homogenization of the acoustic wave equations with a continuum of scales. Comput. Methods Appl. Mech. Engrg. 198(3–4), 397–406 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Owhadi, H., Zhang, L.: Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients. J. Comput. Phys. 347, 99–128 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Peterseim, D.: Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes on Computer Science and Engineering, vol. 114, pp. 341–367. Springer, Cham (2016)zbMATHGoogle Scholar
  28. 28.
    Peterseim, D.: Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comput. 86(305), 1005–1036 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. 72(3), 1196–1213 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut für MathematikUniversität AugsburgAugsburgGermany

Personalised recommendations