A stabilised finite element method for the plate obstacle problem

  • Tom Gustafsson
  • Rolf Stenberg
  • Juha Videman


We introduce a stabilised finite element formulation for the Kirchhoff plate obstacle problem and derive both a priori and residual-based a posteriori error estimates using conforming \(C^1\)-continuous finite elements. We implement the method as a Nitsche-type scheme and give numerical evidence for its effectiveness in the case of an elastic and a rigid obstacle.


Obstacle problem Kirchhoff plate Stabilised FEM A posteriori estimate Nitsche’s method 

Mathematics Subject Classification

65N30 65K15 74S05 


  1. 1.
    Aleksanyan, G.: Regularity of the free boundary in the biharmonic obstacle problem. arXiv preprint arXiv:1603.06819
  2. 2.
    Bartels, S.: Numerical Methods for Nonlinear Partial Differential Equations, Springer Series in Computational Mathematics, vol. 47. Springer, Berlin (2015)Google Scholar
  3. 3.
    Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brenner, S., Gedicke, J., Sung, L.Y., Zhang, Y.: An a posteriori analysis of \({C}^0\) interior penalty methods for the obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 55(1), 87–108 (2017)Google Scholar
  5. 5.
    Brenner, S., Sung, L.Y., Zhang, H., Zhang, Y.: A quadratic \({C}^0\) interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50(6), 3329–3350 (2012)Google Scholar
  6. 6.
    Brenner, S., Sung, L.Y., Zhang, H., Zhang, Y.: A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254, 31–42 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brenner, S., Sung, L.Y., Zhang, Y.: Finite element methods for the displacement obstacle problem of clamped plates. Math. Comput. 81(279), 1247–1262 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math. 31(1), 1–16 (1978/79)Google Scholar
  9. 9.
    Caffarelli, L.A., Friedman, A.: The obstacle problem for the biharmonic operator. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(1), 151–183 (1979)Google Scholar
  10. 10.
    Chouly, F., Fabre, M., Hild, P., Pousin, J., Renard, Y.: Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. 38(2), 921–954 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  12. 12.
    Feng, K., Shi, Z.C.: Mathematical Theory of Elastic Structures. Springer; Science Press, Berlin; Beijing (1996)Google Scholar
  13. 13.
    Frehse, J.: Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. Abh. Math. Sem. Univ. Hamburg 36(1), 140–149 (1971)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fusciardi, A., Scarpini, F.: A mixed finite element solution of some biharmonic unilateral problem. Numer. Funct. Anal. Optim. 2(5), 397–420 (1980)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Glowinski, R., Marini, L.D., Vidrascu, M.: Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J. Numer. Anal. 4(2), 127–167 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79(272), 2169–2189 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gudi, T., Porwal, K.: A \({C}^{0}\) interior penalty method for a fourth-order variational inequality of the second kind. Numer. Methods Partial Differ. Equ. 32(1), 36–59 (2016)Google Scholar
  18. 18.
    Gustafsson, T., Stenberg, R., Videman, J.: Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55(6), 2718–2744 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gustafsson, T., Stenberg, R., Videman, J.: A posteriori estimates for conforming Kirchhoff plate elements. SIAM J. Sci. Comput. 40(3), A1386–A1407 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Han, W., Hua, D., Wang, L.: Nonconforming finite element methods for a clamped plate with elastic unilateral obstacle. J. Integr. Equ. Appl. 18(2), 267–284 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Scholz, R.: Mixed finite element approximation of a fourth order variational inequality by the penalty method. Numer. Funct. Anal. Optim. 9, 233–247 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Stenberg, R., Videman, J.: On the error analysis of stabilized finite element methods for the Stokes problem. SIAM J. Numer. Anal. 53, 2626–2633 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tosone, C., Maceri, A.: The clamped plate with elastic unilateral obstacles: a finite element approach. Math. Models Methods Appl. Sci. 13, 1231–1243 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  26. 26.
    Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.VTT Technical Research Centre of Finland LtdEspooFinland
  2. 2.Department of Mathematics and Systems AnalysisAalto UniversityAaltoFinland
  3. 3.CAMGSD/Departamento de Matemática, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations