Advertisement

BIT Numerical Mathematics

, Volume 58, Issue 4, pp 1049–1077 | Cite as

Regular solutions of DAE hybrid systems and regularization techniques

  • Peter Kunkel
  • Volker Mehrmann
Article
  • 65 Downloads

Abstract

The solvability and regularity of hybrid differential-algebraic systems (DAEs) is studied, and classical stability estimates are extended to hybrid DAE systems. Different reasons for non-regularity are discussed and appropriate regularization techniques are presented. This includes a generalization of Filippov regularization in the case of so-called chattering. The results are illustrated by several numerical examples.

Keywords

Differential-algebraic equation Hybrid system Switched system Index reduction Existence and uniqueness of solutions Filippov regularization Strangeness index Chattering 

Mathematics Subject Classification

34K34 34K28 65L80 65L05 34K32 

References

  1. 1.
    Agrawal, J., Moudgalya, K.M., Pani, A.K.: Sliding motion of discontinuous dynamical systems described by semi-implicit index one differential algebraic equations. Chem. Eng. Sci. 61, 4722–4731 (2006)CrossRefGoogle Scholar
  2. 2.
    Alexander, J.C., Seidman, T.I.: Sliding modes in intersecting switching surfaces II: hysteresis. Houston J. Math. 25, 185–211 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barton, P.I., Lee, C.K.: Modeling, simulation, sensitivity analysis, and optimization of hybrid systems. ACM Trans. Model. Comput. Simul. 12, 256–289 (2002)CrossRefGoogle Scholar
  4. 4.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications. Wiley, New York (1973)zbMATHGoogle Scholar
  5. 5.
    Brogliato, B.: Nonsmooth Mechanics. Springer, New York (1999)CrossRefGoogle Scholar
  6. 6.
    Campbell, S.L.: A general form for solvable linear time varying singular systems of differential equations. SIAM J. Math. Anal. 18, 1101–1115 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. Pitman, San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Dynasim, A.B.: Dymola, multi-engineering modelling and simulation. Ideon Research Park - SE-223 70 Lund - Sweden (2006)Google Scholar
  9. 9.
    Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Systems. Teubner Verlag, Stuttgart (1998)CrossRefGoogle Scholar
  10. 10.
    Filippov, A.F.: Differential Equations with Discontinuous Right-hand Sides. Kluwer, Dordrecht (1998)Google Scholar
  11. 11.
    Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control Systems 29, 28–93 (2009)zbMATHGoogle Scholar
  12. 12.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 1st edn. Springer, Berlin (1987)CrossRefGoogle Scholar
  13. 13.
    Hamann, P.: Modellierung und Simulation von realen Planetengetrieben. Diplomarbeit, Institut für Mathematik, TU Berlin, Berlin, Germany (2003)Google Scholar
  14. 14.
    Hamann, P., Mehrmann, V.: Numerical solution of hybrid differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 197, 693–705 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Isermann, R.: Mechatronic systems: concepts and applications. Trans. Inst. Meas Control 22, 29–55 (2000)CrossRefGoogle Scholar
  16. 16.
    Jeon, D., Tomizuka, M.: Learning hybrid force and position control of robot manipulators. IEEE Trans. Robot. Automat. 9, 423–431 (1996)CrossRefGoogle Scholar
  17. 17.
    Krilavicius, T.: Hybrid techniques for hybrid systems. PhD thesis, University of Twente, Enschede (2006)Google Scholar
  18. 18.
    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich (2006)CrossRefGoogle Scholar
  19. 19.
    Lacoursière, C.: Ghosts and machines: regularized variational methods for interactive simulation of multibodies with dry frictional contacts. Phd thesis, Umeå University, Sweden (2007)Google Scholar
  20. 20.
    Lang, S.: Analysis I, 3rd edn. Addison-Wesley, Reading (1973)Google Scholar
  21. 21.
    Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)CrossRefGoogle Scholar
  22. 22.
    Liberzon, D., Trenn, S.: Switched nonlinear differential algebraic equations: solution theory, lyapunov functions, and stability. Automatica 48(5), 954–963 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lunze, J., Lamnabhi-Laguarrigue, F.: Handbook of Hybrid Systems Control. Theory, Tools and Applications. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  24. 24.
    Lygeros, J., Pappas, G.J., Sastry, S.: An Introduction to Hybrid System Modeling, Analysis, and Control, pp. 307–329. Preprints of the First Nonlinear Control Network Pedagogical School, Athens (1999)Google Scholar
  25. 25.
    Mehrmann, V., Wunderlich, L.: Hybrid systems of differential-algebraic equations—analysis and numerical solution. J. Process Control 19, 1218–1228 (2009)CrossRefGoogle Scholar
  26. 26.
    Modelica Association. Modelica language specification, version 3.0. Modelica AssociationGoogle Scholar
  27. 27.
    Najafi, M., Nikoukhah, R., Campbell, S.L.: ODE and DAE solvers in Scicos environment. In: Iasted Int. Conference on Applied Simulation and Modeling, ASM2004, Rhodes (2004)Google Scholar
  28. 28.
    Trenn, S.: Switched differential algebraic equations. In: Vasca, F., Iannelli, L. (eds.) Dynamics and Control of Switched Electronic Systems, pp. 189–216. Springer, London (2012)CrossRefGoogle Scholar
  29. 29.
    Wunderlich, L.: Analysis and numerical solution of structured and switched differential-algebraic systems. PhD thesis, TU Berlin (2008)Google Scholar
  30. 30.
    Yu, M., Wang, L., Chu, T., Xie, G.: Stabilization of networked control systems with data packet dropout and network delays via switching system approach. In: IEEE Conference on Decision and Control, pp. 3539–3544 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität LeipzigLeipzigGermany
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations