Advertisement

BIT Numerical Mathematics

, Volume 58, Issue 2, pp 457–488 | Cite as

Lagrangian and Hamiltonian Taylor variational integrators

  • Jeremy Schmitt
  • Tatiana Shingel
  • Melvin Leok
Article
  • 147 Downloads

Abstract

In this paper, we present a variational integrator that is based on an approximation of the Euler–Lagrange boundary-value problem via Taylor’s method. This can be viewed as a special case of the shooting-based variational integrator. The Taylor variational integrator exploits the structure of the Taylor method, which results in a shooting method that is one order higher compared to other shooting methods based on a one-step method of the same order. In addition, this method can generate quadrature nodal evaluations at the cost of a polynomial evaluation, which may increase its efficiency relative to other shooting-based variational integrators. A symmetric version of the method is proposed, and numerical experiments are conducted to exhibit the efficacy and efficiency of the method.

Keywords

Geometric numerical integration Variational integrators Symplectic integrators Hamiltonian mechanics 

Mathematics Subject Classification

37M15 65P10 70H05 

References

  1. 1.
    Bucker, H.M., Lang, B., Mey, D. Bischof, C.: Bringing together automatic differentiation and OpenMP. In: ICS ’01 Proceedings of the 15th International conference on Supercomputing, pp. 246–251 (2001)Google Scholar
  2. 2.
    Butcher, J.C.: On fifth and sixth order Runge–Kutta methods: order conditions and order barriers. Can. Appl. Math. Q. 17(3), 433–445 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ford, J.: The Fermi–Pasta–Ulam problem: paradox turns discovery. Phys. Rev. 213(5), 271–310 (1992)MathSciNetGoogle Scholar
  4. 4.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Volume 31 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Haro, A.: Automatic differentiation methods in computational dynamical systems. In: New Directions Short Course: Invariant Objects in Dynamical Systems and their Application, Minneapolis, June 2011. Institute for Mathematics and its Applications (IMA). http://www.maia.ub.edu/~alex/ima/ima1.pdf
  6. 6.
    Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2009)Google Scholar
  7. 7.
    Iserles, A., Norsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer. Math. 44(4), 755–772 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jorba, A., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14, 99–117 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Keller, H.B.: Numerical Methods for Two-Point Boundary Value Problems. Dover Publications Inc., New York (1992)Google Scholar
  10. 10.
    Lall, S., West, M.: Discrete variational Hamiltonian mechanics. J. Phys. A 39(19), 5509–5519 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Leok, M., Shingel, T.: Prolongation–collocation variational integrators. IMA J. Numer. Anal. 32(3), 1194–1216 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Leok, M., Shingel, T.: General techniques for constructing variational integrators. Front. Math. China 7(2), 273–303 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31(4), 1497–1532 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Neidinger, R.D.: Introduction to automatic differentiation and MATLAB object-oriented programming. SIAM Rev. 52(3), 545–563 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Patterson, M., Weinstein, M., Rao, A.: An efficient overloaded method for computing derivatives of mathematical functions in MATLAB. ACM Trans. Math. Softw. 39(3), 17 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rall, L.B.: Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science, vol. 120. Springer, Berlin (1981)CrossRefGoogle Scholar
  18. 18.
    Revels, J., Lubin, M., Papamarkou, T.: Forward-mode automatic differentiation in Julia. In: AD2016—7th International Conference on Algorithmic Differentiation (2016)Google Scholar
  19. 19.
    Schmitt, J.M., Leok, M.: Properties of Hamiltonian variational integrators. IMA J. Numer. Anal. 36, drx010 (2017).  https://doi.org/10.1093/imanum/drx010
  20. 20.
    Shen, X., Leok, M.: Geometric exponential integrators. arXiv:1703.00929 [math.NA] (2017)
  21. 21.
    Simo, C.: Principles of Taylor methods for analytic, non-stiff, ODE. In: Advanced Course on Long Time Integration. University of Barcelona (2007)Google Scholar
  22. 22.
    Sommeijer, B.P.: An explicit Runge–Kutta method of order twenty-five. CWI Q. 11(1), 75–82 (1998)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Stern, A., Grinspun, E.: Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model. Simul. 7(4), 1779–1794 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tan, X.: Almost symplectic Runge–Kutta schemes for Hamiltonian systems. J. Comput. Phys. 203, 250–273 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations