Advertisement

BIT Numerical Mathematics

, Volume 58, Issue 2, pp 489–507 | Cite as

Error estimate of the finite volume scheme for the Allen–Cahn equation

Article

Abstract

The Allen–Cahn equation originates in the phase field formulation of phase transition phenomena. It is a reaction-diffusion ODE with a nonlinear reaction term which allows the formation of a diffuse phase interface. We first introduce a model initial boundary-value problem for the isotropic variant of the equation. Its numerical solution by the method of lines is then considered, using a finite volume scheme for spatial discretization. An error estimate is derived for the solution of the resulting semidiscrete scheme. Subsequently, sample numerical simulations in two and three dimensions are presented and the experimental convergence measurement is discussed.

Keywords

Allen–Cahn equation Error estimate Finite volume method Phase field Semidiscrete scheme Solidification 

Mathematics Subject Classification

65M08 65M15 80A22 74N05 

Notes

Acknowledgements

This work has been supported by the project of the Czech Science Foundation no. 14-36566G Multidisciplinary research centre for advanced materials.

References

  1. 1.
    Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)CrossRefGoogle Scholar
  2. 2.
    Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229, 6270–6299 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beneš, M.: Anisotropic phase-field model with focused latent-heat release. Free Bound. Probl. Theory Appl. II Gakuto Int. Ser. Math. Sci. Appl. 14, 18–30 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    Beneš, M.: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interface Free Bound. 3, 201–221 (2001)MathSciNetMATHGoogle Scholar
  5. 5.
    Beneš, M.: Diffuse-interface treatment of the anisotropic mean-curvature flow. Appl. Math-Czech 48(6), 437–453 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Beneš, M.: Computational studies of anisotropic diffuse interface model of microstructure formation in solidification. Acta Math. Univ. Comen. 76, 39–59 (2007)MathSciNetMATHGoogle Scholar
  7. 7.
    Brauer, F., Nohel, J.A.: The Qualitative Theory of Ordinary Differential Equations. Dover Publications, New York (1989)MATHGoogle Scholar
  8. 8.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Coudiere, Y., Vila, J.P., Villedieu, P.: Convergence rate of a finite volume scheme for a two-dimensional convection diffusion problem. M2AN Math. Model. Numer. Anal. 33, 493–516 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Drblíková, O., Handlovičová, A., Mikula, K.: Error estimates of the finite volume scheme for the nonlinear tensor-driven anisotropic diffusion. Appl. Numer. Math. 59(10), 2548–2570 (2009). doi: 10.1016/j.apnum.2009.05.010 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Drblíková, O., Mikula, K.: Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing. SIAM J. Numer. Anal. 46(1), 37–60 (2007). doi: 10.1137/070685038 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Elliott, C.M., Gardiner, A.R.: Double obstacle phase field computations of dendritic growth. Tech. Rep. 96/19, University of Sussex at Brighton (1996)Google Scholar
  13. 13.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 7, pp. 715–1022. Elsevier, Amsterdam (2000)Google Scholar
  14. 14.
    Green, J.R., Jimack, P.K., Mullis, A.M., Rosam, J.: An adaptive, multilevel scheme for the implicit solution of three-dimensional phase-field equations. Numer. Meth. Part. D. E. 27, 106–120 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hartman, P.: Ordinary Differential Equations, Classics in Applied Mathematics, 2nd edn. SIAM, New Delhi (2002)Google Scholar
  16. 16.
    Hurewicz, W.: Lectures on Ordinary Differential Equations, 2nd edn. M.I.T Press, Cambridge (1970)MATHGoogle Scholar
  17. 17.
    Jeong, J.H., Goldenfeld, N., Dantzig, J.A.: Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 64, 041602 (2001)CrossRefGoogle Scholar
  18. 18.
    Karma, A., Rappel, W.J.: Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett. 77(19), 4050–4053 (1996)CrossRefGoogle Scholar
  19. 19.
    Karma, A., Rappel, W.J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57(4), 4 (1998)CrossRefMATHGoogle Scholar
  20. 20.
    Kupferman, R., Shochet, O., Ben-Jacob, E.: Numerical study of a morphology diagram in the large undercooling limit using a phase-field model. Phys. Rev. E. 50(2), 1005–1008 (1993)CrossRefGoogle Scholar
  21. 21.
    Li, M.E., Yang, G.C.: Growth morphologies of a binary alloy with low anisotropy in directional solidification. Acta Metall. Sin. 20, 258–264 (2007)CrossRefGoogle Scholar
  22. 22.
    Mullis, A.M., Cochrane, R.F.: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts. Acta Mater. 49, 2205–2214 (2001)CrossRefGoogle Scholar
  23. 23.
    Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. part I: stability and error estimates. Math. Comput. 57(195), 73–108 (1991)MATHGoogle Scholar
  24. 24.
    Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. part II: implementation and numerical experiments. J. Sci. Stat. Comput. 12(5), 1207–1244 (1991)CrossRefMATHGoogle Scholar
  25. 25.
    Provatas, N., Goldenfeld, N., Dantzig, J.: Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Comput. Phys. 148, 265–290 (1999)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    PunKay, M.: Modeling of anisotropic surface energies for quantum dot formation and morphological evolution. In: NNIN REU Research Accomplishments, pp. 116–117. University of Michigan (2005)Google Scholar
  27. 27.
    Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations. D. Reidel Publishing Company, Dordrecht (1982)MATHGoogle Scholar
  28. 28.
    Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125, 293–3112 (1996)CrossRefMATHGoogle Scholar
  29. 29.
    Singer, H.M., Singer-Loginova, I., Bilgam, J.H., Amberg, G.: Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions. J. Cryst. Growth. 296, 58–68 (2006)CrossRefGoogle Scholar
  30. 30.
    Strachota, P., Beneš, M.: Design and verification of the MPFA scheme for three-dimensional phase field model of dendritic crystal growth. In: A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley, M.V. Tretyakov (eds.) Numerical Mathematics and Advanced Applications 2011: Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011, pp. 459–467. Springer Berlin Heidelberg (2013). doi: 10.1007/978-3-642-33134-3_49. http://link.springer.com/chapter/10.1007%2F978-3-642-33134-3_49
  31. 31.
    Strachota, P., Beneš, M., Tintěra, J.: Towards clinical applicability of the diffusion-based DT-MRI visualization algorithm. J. Vis. Commun. Image R. 23(2), 387–396 (2012). doi: 10.1016/j.jvcir.2011.11.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations