Parametric finite elements with bijective mappings

  • Patrick Zulian
  • Teseo Schneider
  • Kai Hormann
  • Rolf Krause


The discretization of the computational domain plays a central role in the finite element method. In the standard discretization the domain is triangulated with a mesh and its boundary is approximated by a polygon. The boundary approximation induces a geometry-related error which influences the accuracy of the solution. To control this geometry-related error, iso-parametric finite elements and iso-geometric analysis allow for high order approximation of smooth boundary features. We present an alternative approach which combines parametric finite elements with smooth bijective mappings leaving the choice of approximation spaces free. Our approach allows to represent arbitrarily complex geometries on coarse meshes with curved edges, regardless of the domain boundary complexity. The main idea is to use a bijective mapping for automatically warping the volume of a simple parameterization domain to the complex computational domain, thus creating a curved mesh of the latter. Numerical examples provide evidence that our method has lower approximation error for domains with complex shapes than the standard finite element method, because we are able to solve the problem directly on the exact domain without having to approximate it.


Finite element method Discretization Barycentric coordinates Bijective mapping Super parametric Parametrization 

Mathematics Subject Classification

35-XX 51-XX 65N30 74-XX 


  1. 1.
    Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.V.: Swept Volume Parameterization for Isogeometric Analysis. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Bathe, K.J., Wilson, E.L.: Numerical methods in finite element analysis. AMC 10, 12 (1976)MATHGoogle Scholar
  3. 3.
    Bazilevs, Y., Michler, C., Calo, V., Hughes, T.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199(13–16), 780–790 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bertrand, F., Mun̈zenmaier, S., Starke, G.: First-order system least squares on curved boundaries: higher-order Raviart–Thomas elements. SIAM J. Numer. Anal. 52(6), 3165–3180 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bertrand, F., Mun̈zenmaier, S., Starke, G.: First-order system least squares on curved boundaries: lowest-order Raviart–Thomas elements. SIAM J. Numer. Anal. 52(2), 880–894 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bey, J.: Tetrahedral grid refinement. Computing 55, 355–378 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  8. 8.
    Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the L\(^2\)-projections in H\(^1\). Math. Comput. 71(237), 147–156 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15. Springer, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Ciarlet, P.G., Raviart, P.A.: Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1(2), 217–249 (1972)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dickopf, T., Krause, R.: Monotone Multigrid Methods Based on Parametric Finite Elements. Submitted to Lecture Notes in Computational Science and Engineering. Technical Report, ICS, USI (2011)Google Scholar
  13. 13.
    Dörfler, W., Rumpf, M.: An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comput. Am. Math. Soc. 67(224), 1361–1382 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pp. 173–182. ACM (1995)Google Scholar
  15. 15.
    Erikson, A.P., Åström, K.: On the bijectivity of thin-plate splines. In: Åström, K, Persson, L.E., Silvestrov, S.D. (eds.) Analysis for Science, Engineering and Beyond: The Tribute Workshop in Honour of Gunnar Sparr held in Lund, May 8–9, 2008, pp. 93–141. Springer, Berlin, Heidelberg (2012)Google Scholar
  16. 16.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Greco, F., Sukumar, N.: Derivatives of maximum-entropy basis functions on the boundary: theory and computations. Int. J. Numer. Methods Eng. 94(12), 1123–1149 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hackbusch, W.: Multi-Grid Methods and Applications, Springer Series in Computational Mathematics, vol. 4. Springer, Berlin (1985)CrossRefGoogle Scholar
  19. 19.
    Hormann, K., Sukumar, N.: Maximum entropy coordinates for arbitrary polytopes. Comput. Graph. Forum 27(5), 1513–1520 (2008)CrossRefGoogle Scholar
  20. 20.
    Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Jacobson, A.: Bijective Mappings with Generalized Barycentric Coordinates: A Counterexample. Technical Report, Department of Computer Science, ETH Zurich (2012)Google Scholar
  22. 22.
    Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)CrossRefGoogle Scholar
  23. 23.
    Khronos OpenCL Working Group: The OpenCL Specification, version 1.0.29. (2008)
  24. 24.
    Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, vol. 8. SIAM, Philadelphia (1988)CrossRefMATHGoogle Scholar
  25. 25.
    Krause, R., Sander, O.: Automatic construction of boundary parametrizations for geometric multigrid solvers. Comput. Vis. Sci. 9(1), 11–22 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Krause, R., Zulian, P.: A parallel approach to the variational transfer of discrete fields between arbitrarily distributed finite element meshes. SIAM J. Sci. Comput. 38(3), C307–C333 (2016)Google Scholar
  27. 27.
    Lee, A.W., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D.: Maps: multiresolution adaptive parameterization of surfaces. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 95–104. ACM (1998)Google Scholar
  28. 28.
    Li, B., Li, X., Wang, K., Qin, H.: Surface mesh to volumetric spline conversion with generalized polycubes. IEEE Trans. Vis. Comput. Graph. 19(9), 1539–1551 (2013)CrossRefGoogle Scholar
  29. 29.
    Lian, H., Bordas, S.P.A., Sevilla, R., Simpson, R.N.: Recent Developments in CAD/Analysis Integration. ArXiv e-prints (2012)Google Scholar
  30. 30.
    Luo, X., Shephard, M.S., Remacle, J.F.: The influence of geometric approximation on the accuracy of high order methods. Rensselaer SCOREC Report, vol. 1 (2001)Google Scholar
  31. 31.
    Martin, T., Cohen, E.: Volumetric parameterization of complex objects by respecting multiple materials. Comput. Graph. 34(3), 187–197 (2010)CrossRefGoogle Scholar
  32. 32.
    McKeeman, W.M.: Algorithm 145: adaptive numerical integration by Simpson’s rule. Commun. ACM 5(12), 604–608 (1962)CrossRefGoogle Scholar
  33. 33.
    Melenk, J., Wohlmuth, B.: On residual-based a posteriori error estimation in hp-fem. Adv. Comput. Math. 15(1), 311–331 (2001)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Randrianarivony, M.: Tetrahedral Transfinite Interpolation with B-patch Faces: Construction and Regularity, vol. 803. INS Preprint (2008)Google Scholar
  35. 35.
    Randrianarivony, M.: On transfinite interpolations with respect to convex domains. Comput. Aided Geom. Des. 28(2), 135–149 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Schneider, T., Hormann, K.: Smooth bijective maps between arbitrary planar polygons. Comput. Aided Geom. Des. 35–36(c), 243–354 (2015)Google Scholar
  37. 37.
    Schneider, T., Hormann, K., Floater, M.S.: Bijective composite mean value mappings. Comput. Graph. Forum 32(5), 137–146 (2013)CrossRefGoogle Scholar
  38. 38.
    Scott, L.R.: Finite element techniques for curved boundaries. Ph.D. Thesis, Massachusetts Institute of Technology (1973)Google Scholar
  39. 39.
    Scott, R.: Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12(3), 404–427 (1975)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Sevilla, R., Fernández-Méndez, S., Huerta, A.: Nurbs-enhanced finite element method (nefem). Arch. Comput. Methods Eng. 18(4), 441–484 (2011)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Thiery, J.M., Tierny, J., Boubekeur, T.: Jacobians and Hessians of mean value coordinates for closed triangular meshes. Vis. Comput. 30(9), 981–995 (2014)CrossRefGoogle Scholar
  42. 42.
    Wohlmuth, B.I.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (1998)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Xue, D., Demkowicz, L., et al.: Control of geometry induced error in hp finite element (fe) simulations. I. Evaluation of fe error for curvilinear geometries. Int. J. Numer. Anal. Model 2(3), 283–300 (2005)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Università della Svizzera italianaLuganoSwitzerland

Personalised recommendations