BIT Numerical Mathematics

, Volume 57, Issue 3, pp 811–843 | Cite as

Stability radii for real linear Hamiltonian systems with perturbed dissipation

  • Christian Mehl
  • Volker MehrmannEmail author
  • Punit Sharma


We study linear dissipative Hamiltonian (DH) systems with real constant coefficients that arise in energy based modeling of dynamical systems. We analyze when such a system is on the boundary of the region of asymptotic stability, i.e., when it has purely imaginary eigenvalues, or how much the dissipation term has to be perturbed to be on this boundary. For unstructured systems the explicit construction of the real distance to instability (real stability radius) has been a challenging problem. We analyze this real distance under different structured perturbations to the dissipation term that preserve the DH structure and we derive explicit formulas for this distance in terms of low rank perturbations. We also show (via numerical examples) that under real structured perturbations to the dissipation the asymptotical stability of a DH system is much more robust than for unstructured perturbations.


Dissipative Hamiltonian system Port-Hamiltonian system Real distance to instability Real structured distance to instability Restricted real distance to instability 

Mathematics Subject Classification

93D20 93D09 65F15 15A21 65L80 65L05 34A30 


  1. 1.
    Adhikari, B.: Backward perturbation and sensitivity analysis of structured polynomial eigenvalue problem. PhD thesis, Dept. of Math., IIT Guwahati, Assam, India (2008)Google Scholar
  2. 2.
    Byers, R.: A bisection method for measuring the distance of a stable to unstable matrices. SIAM J. Sci. Stat. Comput. 9, 875–881 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dalsmo, M., van der Schaft, A.J.: On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim. 37, 54–91 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Davis, C., Kahan, W., Weinberger, H.: Norm-preserving dialations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19, 445–469 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 435(12), 3189–3205 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gantmacher, F.R.: Theory of Matrices, vol. 1. Chelsea, New York (1959)zbMATHGoogle Scholar
  7. 7.
    Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications. Birkhäuser, Basel (2006)zbMATHGoogle Scholar
  8. 8.
    Golo, G., van der Schaft, A.J., Breedveld, P.C., Maschke, B.M.: Hamiltonian formulation of bond graphs. In: Rantzer, A., Johansson, R. (eds.) Nonlinear and Hybrid Systems in Automotive Control, pp. 351–372. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  10. 10.
    Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C., von Wagner, U.: Numerical methods for parametric model reduction in the simulation of disc brake squeal. Z. Angew. Math. Mech. 96, 1388–1405 (2016). doi: 10.1002/zamm.201500217 CrossRefGoogle Scholar
  11. 11.
    He, C., Watson, G.A.: An algorithm for computing the distance to instability. SIAM J. Matrix Anal. Appl. 20(1), 101–116 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7, 1–10 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and the algebraic Riccati equation. Syst. Control Lett. 8, 105–113 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Springer, New York (2005)zbMATHGoogle Scholar
  15. 15.
    Kahan, W., Parlett, B.N., Jiang, E.: Residual bounds on approximate eigensystems of nonnormal matrices. SIAM J. Numer. Anal. 19, 470–484 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mackey, D.S., Mackey, N., Tisseur, F.: Structured mapping problems for matrices associated with scalar products. Part I: Lie and Jordan algebras. SIAM J. Matrix Anal. Appl. 29(4), 1389–1410 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Martins, N., Lima, L.: Determination of suitable locations for power system stabilizers and static var compensators for damping electromechanical oscillations in large scale power systems. IEEE Trans. Power Syst. 5, 1455–1469 (1990)CrossRefGoogle Scholar
  18. 18.
    Martins, N., Pellanda, P.C., Rommes, J.: Computation of transfer function dominant zeros with applications to oscillation damping control of large power systems. IEEE Trans. Power Syst. 22, 1657–1664 (2007)CrossRefGoogle Scholar
  19. 19.
    Maschke, B.M., van der Schaft, A.J., Breedveld, P.C.: An intrinsic Hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. J. Frankl. Inst. 329, 923–966 (1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. SIAM J. Matrix Anal. Appl. 37, 1625–1654 (2016)Google Scholar
  21. 21.
    Ortega, R., van der Schaft, A.J., Mareels, Y., Maschke, B.M.: Putting energy back in control. Control Syst. Mag. 21, 18–33 (2001)CrossRefGoogle Scholar
  22. 22.
    Ortega, R., van der Schaft, A.J., Maschke, B.M., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E., Young, P., Doyle, J.: A formula for computation of the real stability radius. Automatica 31, 879–890 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rommes, J., Martins, N.: Exploiting structure in large-scale electrical circuit and power system problems. Linear Algebra Appl. 431, 318–333 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schiehlen, W.: Multibody Systems Handbook. Springer, Heidelberg (1990)CrossRefzbMATHGoogle Scholar
  26. 26.
    van der Schaft, A.J.: Port-Hamiltonian systems: an introductory survey. In: Verona, J.L., Sanz-Sole, M., Verdura, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. III, Invited Lectures, pp. 1339–1365, Madrid, SpainGoogle Scholar
  27. 27.
    van der Schaft, A.J.: Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In: Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, vol. 444. Springer, New York (2004)Google Scholar
  28. 28.
    van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertragungstech. 45, 362–371 (1995)Google Scholar
  29. 29.
    van der Schaft, A.J., Maschke, B.M.: Hamiltonian formulation of distributed-parameter systems with boundary energy flow. J. Geom. Phys. 42, 166–194 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    van der Schaft, A.J., Maschke, B.M.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51, 906–937 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Van Loan, C.F.: How near is a matrix to an unstable matrix? Contemp. Math. AMS 47, 465–479 (1984)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Veselić, K.: Damped Oscillations of Linear Systems: A Mathematical Introduction. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations