BIT Numerical Mathematics

, Volume 56, Issue 4, pp 1213–1236 | Cite as

Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems

  • Carmen Campos
  • Jose E. Roman


We investigate how to adapt the Q-Arnoldi method for the case of symmetric quadratic eigenvalue problems, that is, we are interested in computing a few eigenpairs \((\lambda ,x)\) of \((\lambda ^2M+\lambda C+K)x=0\) with MCK symmetric \(n\times n\) matrices. This problem has no particular structure, in the sense that eigenvalues can be complex or even defective. Still, symmetry of the matrices can be exploited to some extent. For this, we perform a symmetric linearization \(Ay=\lambda By\), where AB are symmetric \(2n\times 2n\) matrices but the pair (AB) is indefinite and hence standard Lanczos methods are not applicable. We implement a symmetric-indefinite Lanczos method and enrich it with a thick-restart technique. This method uses pseudo inner products induced by matrix B for the orthogonalization of vectors (indefinite Gram-Schmidt). The projected problem is also an indefinite matrix pair. The next step is to write a specialized, memory-efficient version that exploits the block structure of A and B, referring only to the original problem matrices MCK as in the Q-Arnoldi method. This results in what we have called the Q-Lanczos method. Furthermore, we define a stabilized variant analog of the TOAR method. We show results obtained with parallel implementations in SLEPc.


Quadratic eigenvalue problem Pseudo-Lanczos Q-Arnoldi TOAR Thick-restart SLEPc 

Mathematics Subject Classification

65F15 15A18 65F50 



The authors are grateful to the reviewers for their constructive comments that helped improve the presentation. The computational experiments of Sect. 7 were carried out on the supercomputer Tirant at Universitat de València.


  1. 1.
    Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bai, Z., Day, D., Ye, Q.: ABLE: an adaptive block Lanczos method for non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 20(4), 1060–1082 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bai, Z., Ericsson, T., Kowalski, T.: Symmetric indefinite Lanczos method. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the solution of algebraic eigenvalue problems: a practical guide, pp. 249–260. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefGoogle Scholar
  4. 4.
    Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Rupp, K., Smith, B., Zampini, S., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National Laboratory (2015)Google Scholar
  5. 5.
    Benner, P., Faßbender, H., Stoll, M.: Solving large-scale quadratic eigenvalue problems with Hamiltonian eigenstructure using a structure-preserving Krylov subspace method. Electron. Trans. Numer. Anal. 29, 212–229 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Campos, C., Roman, J.E.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc (2015, submitted)Google Scholar
  8. 8.
    Day, D.: An efficient implementation of the nonsymmetric Lanczos algorithm. SIAM J. Matrix Anal. Appl. 18(3), 566–589 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33(7–8), 521–540 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jia, Z., Sun, Y.: A refined variant of SHIRA for the skew-Hamiltonian/Hamiltonian (SHH) pencil eigenvalue problem. Taiwan J. Math. 17(1), 259–274 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21(4), 569–588 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kressner, D., Pandur, M.M., Shao, M.: An indefinite variant of LOBPCG for definite matrix pencils. Numer. Algorithms 66(4), 681–703 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lancaster, P.: Linearization of regular matrix polynomials. Electron. J. Linear Algebra 17, 21–27 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lancaster, P., Ye, Q.: Rayleigh-Ritz and Lanczos methods for symmetric matrix pencils. Linear Algebra Appl. 185, 173–201 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lu, D., Su, Y.: Two-level orthogonal Arnoldi process for the solution of quadratic eigenvalue problems (2012, manuscript)Google Scholar
  17. 17.
    Meerbergen, K.: The Lanczos method with semi-definite inner product. BIT 41(5), 1069–1078 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Meerbergen, K.: The Quadratic Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 30(4), 1463–1482 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mehrmann, V., Watkins, D.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput. 22(6), 1905–1925 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Parlett, B.N.: The symmetric Eigenvalue problem. Prentice-Hall, Englewood Cliffs (1980) (reissued with revisions by SIAM, Philadelphia)Google Scholar
  21. 21.
    Parlett, B.N., Chen, H.C.: Use of indefinite pencils for computing damped natural modes. Linear Algebra Appl. 140(1), 53–88 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lánczos algorithm for unsymmetric matrices. Math. Comput. 44(169), 105–124 (1985)MathSciNetzbMATHGoogle Scholar
  23. 23.
    de Samblanx, G., Bultheel, A.: Nested Lanczos: implicitly restarting an unsymmetric Lanczos algorithm. Numer. Algorithms 18(1), 31–50 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Su, Y., Zhang, J., Bai, Z.: A compact Arnoldi algorithm for polynomial eigenvalue problems. In: Presented at RANMEP (2008)Google Scholar
  27. 27.
    Tisseur, F.: Tridiagonal-diagonal reduction of symmetric indefinite pairs. SIAM J. Matrix Anal. Appl. 26(1), 215–232 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Watkins, D.S.: The matrix Eigenvalue problem: GR and Krylov subspace methods. Society for Industrial and Applied Mathematics (2007)Google Scholar
  30. 30.
    Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22(2), 602–616 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Departament de Sistemes Informàtics i ComputacióUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations