Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Local discontinuous Galerkin methods for fractional ordinary differential equations


This paper discusses the upwinded local discontinuous Galerkin methods for the one-term/multi-term fractional ordinary differential equations (FODEs). The natural upwind choice of the numerical fluxes for the initial value problem for FODEs ensures stability of the methods. The solution can be computed element by element with optimal order of convergence \(k+1\) in the \(L^2\) norm and superconvergence of order \(k+1+\min \{k,\alpha \}\) at the downwind point of each element. Here \(k\) is the degree of the approximation polynomial used in an element and \(\alpha \) (\(\alpha \in (0,1]\)) represents the order of the one-term FODEs. A generalization of this includes problems with classic \(m\)’th-term FODEs, yielding superconvergence order at downwind point as \(k+1+\min \{k,\max \{\alpha ,m\}\}\). The underlying mechanism of the superconvergence is discussed and the analysis confirmed through examples, including a discussion of how to use the scheme as an efficient way to evaluate the generalized Mittag-Leffler function and solutions to more generalized FODE’s.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

  2. 2.

    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

  3. 3.

    Brunner, H., Schötzau, D.: Hp-Discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44, 224–245 (2006)

  4. 4.

    Butzer, P.L., Westphal, U.: An introduction to fractional calculus. World Scientific, Singapore (2000)

  5. 5.

    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

  6. 6.

    Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36, 455–473 (1981)

  7. 7.

    Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

  8. 8.

    Deng, W.H., Hesthaven, J.S.: Discontinuous Galerkin methods for fractional diffusion equations. ESAIM M2AN 47, 1845–1864 (2013)

  9. 9.

    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

  10. 10.

    Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005)

  11. 11.

    Guo, B.Q., Heuer, N.: The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comput. Math. 24, 353–374 (2006)

  12. 12.

    Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42, 485–490 (1995)

  13. 13.

    Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer, New York (2008)

  14. 14.

    Mainardi, F.: On some properties of the Mittag-Leffler function \(E_\alpha (-t^\alpha )\), completely monotone for \(t>0\) with \(0< \alpha <1\). Discret. Contin. Dyn. Syst. Ser. B (2014) (in press)

  15. 15.

    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

  16. 16.

    Mustapha, K., Brunner, H., Mustapha, H., Schötzau, D.: An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49, 1369–1396 (2011)

  17. 17.

    Mustapha, K.A.: A Superconvergent discontinuous Galerkin method for Volterra integro-differential equations. Math. Comput. 82, 1987–2005 (2013)

  18. 18.

    Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

  19. 19.

    Schötzau, D., Schwab, C.: An hp a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37, 207–232 (2000)

Download references

Author information

Correspondence to Weihua Deng.

Additional information

Supported by NSFC 11271173, NSF DMS-1115416, and OSD/AFOSR FA9550-09-1-0613.

Communicated by Jan Nordström.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Hesthaven, J.S. Local discontinuous Galerkin methods for fractional ordinary differential equations. Bit Numer Math 55, 967–985 (2015). https://doi.org/10.1007/s10543-014-0531-z

Download citation


  • Fractional ordinary differential equation
  • Local discontinuous Galerkin methods
  • Downwind points
  • Superconvergence
  • Generalized Mittag-Leffler function

Mathematics Subject Classification

  • 34A08
  • 65L60
  • 33E12