BIT Numerical Mathematics

, Volume 55, Issue 1, pp 215–254 | Cite as

Convergence of infinite element methods for scalar waveguide problems

  • Thorsten Hohage
  • Lothar Nannen


We consider the numerical solution of scalar wave equations in domains which are the union of a bounded domain and a finite number of infinite cylindrical waveguides. The aim of this paper is to provide a new convergence analysis of both the perfectly matched layer method and the Hardy space infinite element method in a unified framework. We treat both diffraction and resonance problems. The theoretical error bounds are compared with errors in numerical experiments.


Transparent boundary conditions Waveguide Perfectly matched layer Hardy space infinite elements 

Mathematics Subject Classification

78M10 78A45 65N30 65N12 



The authors dedicate this work to Werner Koch for his inspiration, generosity and enthusiasm concerning the topic of resonances in waveguides. Unfortunately he passed away on August 28, 2012. Moreover, we would like to thank an anonymous referee for detailed and helpful suggestions and corrections. Financial support by the German Science Foundation through grant HO 2551/5 is gratefully acknowledged.


  1. 1.
    Bécache, E., Bonnet-Ben Dhia, A.-S., Legendre, G.: Perfectly matched layers for the convected Helmholtz equation. SIAM J. Numer. Anal. 42, 409–433 (2004)Google Scholar
  2. 2.
    Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonnet-Ben Dhia, A.S., Jr Ciarlet, P., Zwölf, C.M.: Time harmonic wave diffraction problems in materials with sign-shifting coefficient. J. Comput. Appl. Math. 234, 1912–1919 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Burger, S., Zschiedrich, L., Pomplun, J., Schmidt, F.: Finite element method for accurate 3d simulation of plasmonic waveguides. In Integrated optics: devices, materials, and technologies XIV, vol. 7604, Proc. SPIE, p 76040F (2010)Google Scholar
  5. 5.
    Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–826 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Duren, P.L.: Theory of \(H^{p}\) Spaces, Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)Google Scholar
  7. 7.
    Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators. Vol. I, vol. 49 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (1990)CrossRefGoogle Scholar
  8. 8.
    Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks]. In: B. G. Teubner, Stuttgart, second ed. (1996)Google Scholar
  9. 9.
    Hein, S., Koch, W., Nannen, L.: Fano resonances in acoustics. J. Fluid Mech. 664, 238–264 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hein, S., Koch, W., Nannen, L.: Trapped modes and Fano resonances in two-dimensional acoustical ductcavity systems. J. Fluid Mech. 692, 257–287 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hislop, P.D., Sigal, I.M.: Introduction to spectral theory, vol. 113 of Applied Mathematical Sciences, Springer, New York. With applications to Schrödinger operators (1996)Google Scholar
  12. 12.
    Hohage, T., Nannen, L.: Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47, 972–996 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hohage, T., Schmidt, F., Zschiedrich, L.: Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method. SIAM J. Math. Anal. 35, 547–560 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kalvin, V.: Perfectly matched layers for diffraction gratings in inhomogeneous media, stability and error estimates. SIAM J. Appl. Math. 40, 309–330 (2011)MathSciNetGoogle Scholar
  15. 15.
    Karma, O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17, 365–387 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kim, S., Pasciak, J.E.: The computation of resonances in open systems using a perfectly matched layer. Math. Comp. 78, 1375–1398 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kress, R.: Linear integral equations. Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)Google Scholar
  18. 18.
    Lassas, M., Somersalo, E.: On the existence and the convergence of the solution of the PML equations. Computing 60, 229–241 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Levitin, M., Marletta, M.: A simple method of calculating eigenvalues and resonances in domains with infinite regular ends. Proc. Roy. Soc. Edinb. Sect. A 138, 1043–1065 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Moiseyev, N.: Quantum theory of resonances: calculating energies, width and cross-sections by complex scaling. Phys. Rep. 302, 211–293 (1998)CrossRefGoogle Scholar
  21. 21.
    Nannen, L., Hohage, T., Schädle, A., Schöberl, J.: Exact sequences of high order Hardy space infinite elements for exterior Maxwell problems. SIAM J. Sci. Comput. 35, A1024–A1048 (2013)Google Scholar
  22. 22.
    Nannen, L., Schädle, A.: Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities. Wave Motion 48, 116–129 (2010)CrossRefGoogle Scholar
  23. 23.
    Nazarov, S.A., Plamenevsky, B.A.: Elliptic problems with domains with piecewise smooth boundaries. Walter de Gruyter, Berlin (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Racec, P.N., Racec, E.R., Neidhardt, H.: Evanescent channels and scattering in cylindrical nanowire heterostructures. Phys. Rev. B 79, 155305 (2009)CrossRefGoogle Scholar
  25. 25.
    Rotter, S., Libisch, F., Burgdörfer, J., Kuhl, U., Stöckmann, H.-J.: Tunable Fano resonances in transport through microwave billiards. Phys. Rev. E 69, 046208 (2004)CrossRefGoogle Scholar
  26. 26.
    Schenk, O., Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, in computational science–ICCS: part II (Amsterdam), vol. 2330 of Lecture Notes in Computer Science Springer, Berlin, 2002, 355–363 (2002)Google Scholar
  27. 27.
    Schöberl, J.: Netgen—an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci 1, 41–52 (1997)CrossRefzbMATHGoogle Scholar
  28. 28.
    Steinbach, O., Unger, G.: Convergence analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem. SIAM J. Numer. Anal. 50, 710–728 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Zschiedrich, L., Klose, R., Schädle, A., Schmidt, F.: A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in 2d. J. Comput. Appl. Math. 188, 12–32 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut für Numerische und Angewandte MathematikGeorg-August Universität GöttingenGöttingenGermany
  2. 2.Institut für Analysis und Scientific ComputingTechnische Universität WienWienAustria

Personalised recommendations