BIT Numerical Mathematics

, Volume 54, Issue 3, pp 729–748 | Cite as

Accelerated convergence for Schrödinger equations with non-smooth potentials

Article

Abstract

When numerically solving the time-dependent Schrödinger equation for the electrons in an atom or molecule, the Coulomb singularity poses a challenge. The solution will have limited regularity, and high-order spatial discretisations, which are much favoured in the chemical physics community, are not performing to their full potential. By exploiting knowledge about the jumps in the derivatives of the solution we construct a correction, and show how this improves the convergence rate of Fourier collocation from second to fourth order. This allows for a substantial reduction in the number of grid points. The new method is applied to the higher harmonic generation from atomic hydrogen.

Keywords

Time-dependent Schrödinger equation Spectral methods Non-smooth coefficients Higher harmonic generation 

Mathematics Subject Classification (2010)

35Q40 65M12 65M70 

References

  1. 1.
    Doumy, G., DiMauro, L.F.: Interrogating molecules. Science 322, 1194–1195 (2008)CrossRefGoogle Scholar
  2. 2.
    Drescher, M., Hentschel, M., Kienberger, R., Uiberacker, M., Yakovlev, V., Scrinzi, A., Westerwalbesloh, T., Kleineberg, U., Heinzmann, U., Krausz, F.: Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)CrossRefGoogle Scholar
  3. 3.
    Fornberg, B.: The pseudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics 52, 483–501 (1987)CrossRefGoogle Scholar
  4. 4.
    Fornberg, B.: The pseudospectral method: Accurate representation of interfaces in elastic wave calculations. Geophysics 53, 625–637 (1988)CrossRefGoogle Scholar
  5. 5.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)MATHGoogle Scholar
  6. 6.
    Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York, NY (1995)MATHGoogle Scholar
  7. 7.
    Hochbruck, M., Lubich, C.: On Magnus integrators for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 41, 945–963 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jung, J.-H.: A note on the spectral collocation approximation of some differential equations with singular source terms. J. Sci. Comput. 39, 49–66 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kosloff, D., Kosloff, R.: A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys. 52, 35–53 (1983)CrossRefMATHGoogle Scholar
  10. 10.
    Krausz, F., Ivanov, M.: Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)CrossRefGoogle Scholar
  11. 11.
    Kreiss, H.-O., Oliger, J.: Stability of the Fourier method. SIAM J. Numer. Anal. 16, 421–433 (1979)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Luo, E., Kreiss, H.-O.: Pseudospectral versus finite difference methods for initial value problems with discontinuous coefficients. SIAM J. Sci. Comput. 20, 148–163 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Nissen, A., Kreiss, G.: An optimized perfectly matched layer for the Schrödinger equation. Commun. Comput. Phys. 9, 147–179 (2011)MathSciNetMATHGoogle Scholar
  14. 14.
    Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1–10 (1986)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Tadmor, E.: Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. 16, 305–378 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1966)MATHGoogle Scholar
  17. 17.
    Winterfeldt, C., Spielmann, C., Gerber, G.: Colloquium: optimal control of high-harmonic generation. Rev. Mod. Phys. 80, 117–140 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations