BIT Numerical Mathematics

, Volume 54, Issue 3, pp 729–748 | Cite as

Accelerated convergence for Schrödinger equations with non-smooth potentials

  • Emil KieriEmail author


When numerically solving the time-dependent Schrödinger equation for the electrons in an atom or molecule, the Coulomb singularity poses a challenge. The solution will have limited regularity, and high-order spatial discretisations, which are much favoured in the chemical physics community, are not performing to their full potential. By exploiting knowledge about the jumps in the derivatives of the solution we construct a correction, and show how this improves the convergence rate of Fourier collocation from second to fourth order. This allows for a substantial reduction in the number of grid points. The new method is applied to the higher harmonic generation from atomic hydrogen.


Time-dependent Schrödinger equation Spectral methods Non-smooth coefficients Higher harmonic generation 

Mathematics Subject Classification (2010)

35Q40 65M12 65M70 



The author thanks Sverker Holmgren for helpful discussions, and Markus Kowalewski for providing access to his software for quantum dynamics computations.


  1. 1.
    Doumy, G., DiMauro, L.F.: Interrogating molecules. Science 322, 1194–1195 (2008)CrossRefGoogle Scholar
  2. 2.
    Drescher, M., Hentschel, M., Kienberger, R., Uiberacker, M., Yakovlev, V., Scrinzi, A., Westerwalbesloh, T., Kleineberg, U., Heinzmann, U., Krausz, F.: Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)CrossRefGoogle Scholar
  3. 3.
    Fornberg, B.: The pseudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics 52, 483–501 (1987)CrossRefGoogle Scholar
  4. 4.
    Fornberg, B.: The pseudospectral method: Accurate representation of interfaces in elastic wave calculations. Geophysics 53, 625–637 (1988)CrossRefGoogle Scholar
  5. 5.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)zbMATHGoogle Scholar
  6. 6.
    Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York, NY (1995)zbMATHGoogle Scholar
  7. 7.
    Hochbruck, M., Lubich, C.: On Magnus integrators for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 41, 945–963 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jung, J.-H.: A note on the spectral collocation approximation of some differential equations with singular source terms. J. Sci. Comput. 39, 49–66 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kosloff, D., Kosloff, R.: A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys. 52, 35–53 (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Krausz, F., Ivanov, M.: Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)CrossRefGoogle Scholar
  11. 11.
    Kreiss, H.-O., Oliger, J.: Stability of the Fourier method. SIAM J. Numer. Anal. 16, 421–433 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Luo, E., Kreiss, H.-O.: Pseudospectral versus finite difference methods for initial value problems with discontinuous coefficients. SIAM J. Sci. Comput. 20, 148–163 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nissen, A., Kreiss, G.: An optimized perfectly matched layer for the Schrödinger equation. Commun. Comput. Phys. 9, 147–179 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1–10 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tadmor, E.: Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. 16, 305–378 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1966)zbMATHGoogle Scholar
  17. 17.
    Winterfeldt, C., Spielmann, C., Gerber, G.: Colloquium: optimal control of high-harmonic generation. Rev. Mod. Phys. 80, 117–140 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations