BIT Numerical Mathematics

, Volume 53, Issue 4, pp 827–840 | Cite as

Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic differential equations



We introduce two drift-diagonally-implicit and derivative-free integrators for stiff systems of Itô stochastic differential equations with general non-commutative noise which have weak order 2 and deterministic order 2, 3, respectively. The methods are shown to be mean-square A-stable for the usual complex scalar linear test problem with multiplicative noise and improve significantly the stability properties of the drift-diagonally-implicit methods previously introduced (Debrabant and Rößler, Appl. Numer. Math. 59(3–4):595–607, 2009).


Stiff SDEs Drift-implicit stochastic methods Mean-square stability 

Mathematics Subject Classification (2000)

65C30 60H35 65L20 


  1. 1.
    Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2008) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abdulle, A., Cohen, D., Vilmart, G., Zygalakis, K.C.: High order weak methods for stochastic differential equations based on modified equations. SIAM J. Sci. Comput. 34(3), 1800–1823 (2012) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Abdulle, A., Li, T.: S-ROCK methods for stiff Ito SDEs. Commun. Math. Sci. 6(4), 845–868 (2008) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Abdulle, A., Vilmart, G., Zygalakis, K.: Weak second order explicit stabilized methods for stiff stochastic differential equations. SIAM J. Sci. Comput. (2013, to appear) Google Scholar
  5. 5.
    Alcock, J., Burrage, K.: Stable strong order 1.0 schemes for solving stochastic ordinary differential equations. BIT Numer. Math. 52(3), 539–557 (2012) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974) MATHGoogle Scholar
  7. 7.
    Burrage, K., Burrage, P., Tian, T.: Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460(2041), 373–402 (2004) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Debrabant, K., Rößler, A.: Diagonally drift-implicit Runge–Kutta methods of weak order one and two for Itô SDE: s and stability analysis. Appl. Numer. Math. 59(3–4), 595–607 (2009) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gard, T.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988) MATHGoogle Scholar
  10. 10.
    Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Verlag Series in Comput. Math., vol. 8. Springer, Berlin (1993) MATHGoogle Scholar
  11. 11.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, Berlin (1996) CrossRefMATHGoogle Scholar
  12. 12.
    Higham, D.: A-stability and stochastic mean-square stability. BIT Numer. Math. 40, 404–409 (2000) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Higham, D.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (2000) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992) CrossRefMATHGoogle Scholar
  15. 15.
    Komori, Y.: Weak second-order stochastic Runge-Kutta methods for non-commutative stochastic differential equations. J. Comput. Appl. Math. 206(1), 158–173 (2007) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Komori, Y., Mitsui, T.: Stable ROW-type weak scheme for stochastic differential equations. Monte Carlo Methods Appl. 1(4), 279–300 (1995) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Milstein, G.N.: Weak approximation of solutions of systems of stochastic differential equations. Theory Probab. Appl. 30(4), 750–766 (1986) CrossRefGoogle Scholar
  18. 18.
    Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Scientific Computing. Springer, Berlin (2004) CrossRefGoogle Scholar
  19. 19.
    Rößler, A.: Second order Runge-Kutta methods for Itô stochastic differential equations. SIAM J. Numer. Anal. 47(3), 1713–1738 (2009) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33, 2254–2267 (1996) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Talay, D.: Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications. In: Lecture Notes in Control and Inform. Sci., vol. 61, pp. 294–313. Springer, Berlin (1984) Google Scholar
  22. 22.
    Tocino, A.: Mean-square stability of second-order Runge-Kutta methods for stochastic differential equations. J. Comput. Appl. Math. 175(2), 355–367 (2005) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.ANMC, Section de MathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.École Normale Supérieure de Cachan, Antenne de Bretagne, INRIA Rennes, IRMAR, CNRSUEBBruzFrance
  3. 3.School of MathematicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations