Advertisement

BIT Numerical Mathematics

, Volume 53, Issue 2, pp 311–339 | Cite as

Hierarchical matrix approximation with blockwise constraints

  • M. Bebendorf
  • M. Bollhöfer
  • M. Bratsch
Article

Abstract

A new technique is presented to preserve constraints to a hierarchical matrix approximation. This technique is used to preserve spaces from which the eigenvectors corresponding to small eigenvalues can be approximated, which guarantees spectral equivalence for approximate preconditioners.

Keywords

Approximate LU decomposition Preconditioning Hierarchical matrices 

Mathematics Subject Classification

35C20 65F05 65F50 65N30 

References

  1. 1.
    Barnes, J., Hut, P.: A hierarchical \(\mathcal{O}({N}\log{N})\) force calculation algorithm. Nature 324, 446–449 (1986) CrossRefGoogle Scholar
  2. 2.
    Bebendorf, M.: Hierarchical Matrices: a Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63. Springer, Berlin (2008). ISBN 978-3-540-77146-3 Google Scholar
  3. 3.
    Bebendorf, M., Chen, Y.: Efficient solution of nonlinear elliptic problems using hierarchical matrices with Broyden updates. Computing 81, 239–257 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bebendorf, M., Fischer, T.: On the purely algebraic data-sparse approximation of the inverse and the triangular factors of sparse matrices. Numer. Linear Algebra Appl. 18, 105–122 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bebendorf, M., Ostrowski, J.: Parallel hierarchical matrix preconditioners for the curl-curl operator. J. Comput. Math. 27(5), 624–641 (2009). Special issue on Adaptive and Multilevel Methods for Electromagnetics MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Botta, E., Wubs, F.: Matrix Renumbering ILU: an effective algebraic multilevel ILU preconditioner for sparse matrices. SIAM J. Matrix Anal. Appl. 20(4), 1007–1026 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Giebermann, K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\mathcal{H}}\)-matrices. Computing 70, 295–334 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Greenbaum, A.: Iterative methods for solving linear systems. In: Frontiers in Applied Mathematics, vol. 17. SIAM, Philadelphia (1997) Google Scholar
  10. 10.
    Greengard, L.F., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica, vol. 6, pp. 229–269. Cambridge University Press, Cambridge (1997) Google Scholar
  12. 12.
    Gustafsson, I.: A class of first order factorization methods. BIT Numer. Math. 18, 142–156 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985) zbMATHCrossRefGoogle Scholar
  14. 14.
    Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal {H}\)-matrices. Part I: Introduction to \(\mathcal{H}\)-matrices. Computing 62(2), 89–108 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hackbusch, W.: Hierarchische Matrizen. Springer, Berlin (2009) zbMATHCrossRefGoogle Scholar
  16. 16.
    Hackbusch, W., Khoromskij, B.N.: A sparse \(\mathcal{H}\)-matrix arithmetic. Part II: Application to multi-dimensional problems. Computing 64(1), 21–47 (2000) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math. 11, 50–59 (1960) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Notay, Y.: On the convergence rate of the conjugate gradient methods in presence of rounding errors. Numer. Math. 65, 301–317 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003) zbMATHCrossRefGoogle Scholar
  22. 22.
    Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1–2), 47–57 (1996). Toeplitz matrices: structures, algorithms and applications (Cortona, 1996) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Van der Ploeg, A., Botta, E., Wubs, F.: Nested grids ILU-decomposition (NGILU). J. Comput. Appl. Math. 66, 515–526 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wagner, C.: Tangential frequency filtering decompositions for symmetric matrices. Numer. Math. 78, 119–142 (1996) CrossRefGoogle Scholar
  25. 25.
    Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, London (1988) zbMATHGoogle Scholar
  26. 26.
    Wittum, G.: Schnelle Löser für Große Gleichungssysteme. Teubner, Leipzig (1992) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute for Numerical SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Institute for Computational MathematicsTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations