BIT Numerical Mathematics

, Volume 53, Issue 1, pp 3–27 | Cite as

Multilevel Monte Carlo method for parabolic stochastic partial differential equations

  • Andrea Barth
  • Annika LangEmail author
  • Christoph Schwab


We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of abstract stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler–Maruyama discretization in time yields mean square convergence of order one in space and of order 1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh.


Multilevel Monte Carlo Stochastic partial differential equations Stochastic Finite Element Methods Stochastic parabolic equation Multilevel approximations 

Mathematics Subject Classification (2010)

60H15 60H35 65C30 41A25 65C05 65N30 



This research was supported in part by the European Research Council under grant ERC AdG 247277.


  1. 1.
    Auscher, P., Tchamitchian, P.: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: L 2 theory. J. Anal. Math. 90, 1–12 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barth, A.: A finite element method for martingale-driven stochastic partial differential equations. Commum. Stoch. Anal. 4(3), 355–375 (2010) MathSciNetGoogle Scholar
  3. 3.
    Barth, A., Lang, A.: L p and almost sure convergence of a Milstein scheme for stochastic partial differential equations. SAM Report 2011-15, Seminar for Applied Mathematics, ETH Zurich (2011) Google Scholar
  4. 4.
    Barth, A., Lang, A.: Milstein approximation for advection-diffusion equations driven multiplicative noncontinuous martingale noises. Appl. Math. Optim. (2012). doi: 10.1007/s00245-012-9176-y MathSciNetGoogle Scholar
  5. 5.
    Barth, A., Lang, A.: Simulation of stochastic partial differential equations using finite element methods. Stochastics 84(2–3), 217–231 (2012) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Barth, A., Schwab, Ch., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chow, P.L., Jiang, J.L., Menaldi, J.L.: Pathwise convergence of approximate solutions to Zakai’s equation in a bounded domain. In: Da Prato, G. et al. (eds.) Stochastic Partial Differential Equations and Applications. Proceedings of the Third Meeting on Stochastic Partial Differential Equations and Applications held at Villa Madruzzo, Trento, Italy, January 1990. Pitman Res. Notes Math. Ser., vol. 268, pp. 111–123. Longman Scientific & Technical, Harlow (1992) Google Scholar
  8. 8.
    Clark, D.S.: Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16, 279–281 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992) zbMATHCrossRefGoogle Scholar
  10. 10.
    Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, Berlin (2000) zbMATHGoogle Scholar
  11. 11.
    Geissert, M., Kovács, M., Larsson, S.: Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT Numer. Math. 49(2), 343–356 (2009) zbMATHCrossRefGoogle Scholar
  12. 12.
    Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A. et al. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006. Selected Papers Based on the Presentations at the 7th International Conference ‘Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing’, Ulm, Germany, August 14–18, 2006, pp. 343–358. Springer, Berlin (2008) CrossRefGoogle Scholar
  13. 13.
    Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Divergence of the multilevel Monte Carlo method (2011). arXiv:1105.0226 [math.PR]
  15. 15.
    Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77(1), 205–244 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jentzen, A., Röckner, M.: A Milstein scheme for SPDEs (2010). arXiv:1001.2751 [math.NA]
  17. 17.
    Kantorovitz, S.: On Liu’s analyticity criterion for semigroups. Semigroup Forum 53(2), 262–265 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kato, T.: Perturbation Theory for Linear Operators, Corr. printing of the 2nd edn. Grundlehren der mathematischen Wissenschaften, vol. 132. Springer, Berlin (1980) zbMATHGoogle Scholar
  19. 19.
    Kloeden, P., Lord, G., Neuenkirch, A., Shardlow, T.: The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds. J. Comput. Appl. Math. 235(5), 1245–1260 (2011) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kovács, M., Larsson, S., Saedpanah, F.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408–427 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise (2011). arXiv:1103.4504 [math.NA]
  22. 22.
    Lang, A.: Mean square convergence of a semidiscrete scheme for SPDEs of Zakai type driven by square integrable martingales. Proc. Comput. Sci. 1(1), 1609–1617 (2010). ICCS 2010 Google Scholar
  23. 23.
    Mishra, S., Schwab, Ch.: Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput. 81, 1979–2018 (2012) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983) zbMATHCrossRefGoogle Scholar
  25. 25.
    Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Encyclopedia of Mathematics and Its Applications, vol. 113. Cambridge University Press, Cambridge (2007) zbMATHCrossRefGoogle Scholar
  26. 26.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd revised and expanded edn. Springer Series in Computational Mathematics, vol. 25. Springer, Berlin (2006) zbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  1. 1.Seminar für Angewandte MathematikETHZürichSwitzerland

Personalised recommendations