Advertisement

BIT Numerical Mathematics

, Volume 52, Issue 3, pp 559–569 | Cite as

Local coarsening of simplicial finite element meshes generated by bisections

  • Sören Bartels
  • Patrick Schreier
Article

Abstract

A simple criterion that allows the efficient local coarsening of simplicial finite element meshes generated by bisections is devised and analyzed. Under a mild condition on the initial triangulation the proposed criterion allows to gradually reverse the entire refinement without employing its history explicitly. Numerical experiments underline the efficiency of the resulting algorithm.

Keywords

Bisection Coarsening Adaptivity Partial differential equations Finite elements 

Mathematics Subject Classification (2010)

65M50 65M60 65N50 

References

  1. 1.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, L., Zhang, C.: A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. J. Comput. Math. 28, 767–789 (2010) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Maubach, J.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Traxler, C.T.: An algorithm for adaptive mesh refinement in n dimensions. Computing 59, 115–137 (1997) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations