BIT Numerical Mathematics

, Volume 52, Issue 3, pp 615–637

On energy preserving consistent boundary conditions for the Yee scheme in 2D

Article

Abstract

The Yee scheme is one of the most popular methods for electromagnetic wave propagation. A main advantage is the structured staggered grid, making it simple and efficient on modern computer architectures. A downside to this is the difficulty in approximating oblique boundaries, having to resort to staircase approximations.

In this paper we present a method to improve the boundary treatment in two dimensions by, starting from a staircase approximation, modifying the coefficients of the update stencil so that we can obtain a consistent approximation while preserving the energy conservation, structure and the optimal CFL-condition of the original Yee scheme. We prove this in L2 and verify it by numerical experiments.

Keywords

Yee scheme FDTD Computational electromagnetics 

Mathematics Subject Classification (2010)

35L05 65M12 78M20 

References

  1. 1.
    Cangellaris, A., Wright, D.: Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena. IEEE Trans. Antennas Propag. 39(10), 1518–1525 (1991) CrossRefGoogle Scholar
  2. 2.
    Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dey, S., Mittra, R.: A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects. IEEE Microw. Guided Wave Lett. 7(9), 273–275 (1997) CrossRefGoogle Scholar
  4. 4.
    Dey, S., Mittra, R.: A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects. Microw. Opt. Technol. Lett. 17(6), 349–352 (1998) CrossRefGoogle Scholar
  5. 5.
    Ditkowski, A., Dridi, K., Hesthaven, J.S.: Convergent Cartesian grid methods for Maxwell’s equations in complex geometries. J. Comput. Phys. 170(1), 39–80 (2001) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gottlieb, D., Gustafsson, B., Olsson, P., Strand, B.: On the superconvergence of Galerkin methods for hyperbolic IBVP. SIAM J. Numer. Anal. 33(5), 1778–1796 (1996) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 29(130), 396–406 (1975) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008) MATHGoogle Scholar
  9. 9.
    Gustafsson, B., Kreiss, H.O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems. ii. Math. Comput. 26(119), 649–686 (1972) CrossRefMATHGoogle Scholar
  10. 10.
    Hao, Y., Railton, C.: Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes. IEEE Trans. Microw. Theory Tech. 46(1), 82–88 (1998) CrossRefGoogle Scholar
  11. 11.
    Hesthaven, J.: High-order accurate methods in time-domain computational electromagnetics: A review. Adv. Imaging Electron Phys. 127, 59–123 (2003) CrossRefGoogle Scholar
  12. 12.
    Holland, R.: Pitfalls of staircase meshing. IEEE Trans. Electromagn. Compat. 35(4), 434–439 (1993) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jurgens, T., Taflove, A.: Three-dimensional contour FDTD modeling of scattering from single and multiple bodies. IEEE Trans. Antennas Propag. 41(12), 1703–1708 (1993) CrossRefGoogle Scholar
  14. 14.
    Jurgens, T., Taflove, A., Umashankar, K., Moore, T.: Finite-difference time-domain modeling of curved surfaces [EM scattering]. IEEE Trans. Antennas Propag. 40(4), 357–366 (1992) CrossRefGoogle Scholar
  15. 15.
    Mattsson, K.: Boundary procedures for summation-by-parts operators. J. Sci. Comput. 18, 133–153 (2003) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Monorchio, A., Mittra, R.: A hybrid finite-element finite-difference time-domain (FE/FDTD) technique for solving complex electromagnetic problems. IEEE Microw. Guided Wave Lett. 8(2), 93–95 (1998) CrossRefGoogle Scholar
  17. 17.
    Nieter, C., Cary, J.R., Werner, G.R., Smithe, D.N., Stoltz, P.H.: Application of Dey-Mittra conformal boundary algorithm to 3d electromagnetic modeling. J. Comput. Phys. 228, 7902–7916 (2009) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45(4), 453–473 (2003) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Railton, C., Craddock, I.: Stabilised CPFDTD algorithm for the analysis of arbitrary 3D PEC structures. IEE Proc., Microw. Antennas Propag. 143(5), 367–372 (1996) CrossRefGoogle Scholar
  20. 20.
    Railton, C., Schneider, J.: An analytical and numerical analysis of several locally conformal FDTD schemes. IEEE Trans. Microw. Theory Tech. 47(1), 56–66 (1999) CrossRefGoogle Scholar
  21. 21.
    Rylander, T., Bondeson, A.: Stable FEM-FDTD hybrid method for Maxwell’s equations. Comput. Phys. Commun. 125(1–3), 75–82 (2000) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Shang, J.S.: High-order compact-difference schemes for time-dependent Maxwell equations. J. Comput. Phys. 153(2), 312–333 (1999) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tolan, J.G., Schneider, J.B.: Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces. J. Acoust. Soc. Am. 114(5), 2575–2581 (2003) CrossRefGoogle Scholar
  24. 24.
    Tornberg, A.K.: Regularization techniques for singular source terms in differential equations. In: Laptev, A. (ed.) European Congress of Mathematics (ECM), Stockholm, Sweden, June 27–July 2 2004. European Mathematical Society, Zurich (2005) Google Scholar
  25. 25.
    Tornberg, A.K., Engquist, B.: Regularization techniques for numerical approximation of PDEs with singularities. J. Sci. Comput. 19, 527–552 (2003) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462–488 (2004) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Tornberg, A.K., Engquist, B.: Regularization for accurate numerical wave propagation in discontinuous media. Methods Appl. Anal. 13, 247–274 (2006) MathSciNetMATHGoogle Scholar
  28. 28.
    Tornberg, A.K., Engquist, B.: Consistent boundary conditions for the Yee scheme. J. Comput. Phys. 227(14), 6922–6943 (2008) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tornberg, A.K., Engquist, B., Gustafsson, B., Wahlund, P.: A new type of boundary treatment for wave propagation. BIT Numer. Math. 46 (supplement), 145–170 (2006) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Trefethen, L.N.: Stability of finite-difference models containing two boundaries or interfaces. Math. Comput. 45(172), 279–300 (1985) MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Turkel, E.: Progress in computational physics. Comput. Fluids 11(2), 121–144 (1983) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wu, R.B., Itoh, T.: Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements. IEEE Trans. Antennas Propag. 45(8), 1302–1309 (1997) CrossRefGoogle Scholar
  33. 33.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966) CrossRefMATHGoogle Scholar
  34. 34.
    Young, J., Gaitonde, D., Shang, J.: Toward the construction of a fourth-order difference scheme for transient em wave simulation: staggered grid approach. IEEE Trans. Antennas Propag. 45(11), 1573–1580 (1997) MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Yu, W., Mittra, R.: A conformal FDTD algorithm for modeling perfectly conducting objects with curve-shaped surfaces and edges. Microw. Opt. Technol. Lett. 27(2), 136–138 (2000) CrossRefGoogle Scholar
  36. 36.
    Zagorodnov, I., Schuhmann, R., Weiland, T.: A uniformly stable conformal FDTD-method in Cartesian grids. Int. J. Numer. Model. 16(2), 127–141 (2003) CrossRefMATHGoogle Scholar
  37. 37.
    Zagorodnov, I., Schuhmann, R., Weiland, T.: Conformal FDTD-methods to avoid time step reduction with and without cell enlargement. J. Comput. Phys. 225(2), 1493–1507 (2007) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA
  2. 2.Department of Numerical AnalysisCSC, KTHStockholmSweden
  3. 3.Swedish e-Science Research Center (SeRC)StockholmSweden

Personalised recommendations