BIT Numerical Mathematics

, Volume 52, Issue 3, pp 639–659 | Cite as

Resolvent Krylov subspace approximation to operator functions



We consider the approximation of operator functions in resolvent Krylov subspaces. Besides many other applications, such approximations are currently of high interest for the approximation of φ-functions that arise in the numerical solution of evolution equations by exponential integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behaviour if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we analyse a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators whose field of values lies in the left half plane. In contrast to standard Krylov methods, the convergence will be independent of the norm of the discretised operator and thus of the spatial discretisation. We will discuss efficient implementations for finite element discretisations and illustrate our analysis with numerical experiments.


Operator/matrix functions Rational Krylov subspace method φ-functions Evolution equations Exponential integrators Hyperbolic problems Highly oscillatory equations Finite element discretisation 

Mathematics Subject Classification (2010)

65F60 65F10 65M60 65N22 



This work is supported by the Deutsche Forschungsgemeinschaft (DFG) via research grant GR 3787/1-1.

The author thanks Maria Carmela De Bonis and Tanja Göckler for a careful reading of the manuscript, Maria Carmela De Bonis for providing a copy of her joint work with G. Mastroianni and M. Viggiano [4], and two anonymous referees for pointing to the work of Beckermann and Reichel [2].


  1. 1.
    Afanasjew, M., Eiermann, M., Ernst, O.G., Güttel, S.: Implementation of a restarted Krylov subspace method for the evaluation of matrix functions. Linear Algebra Appl. 429, 2293–2314 (2008) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Beckermann, B., Reichel, L.: Error estimates and evaluation of matrix functions via the Faber transform. SIAM J. Numer. Anal. 47(5), 3849–3883 (2009). doi: 10.1137/080741744 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bergamaschi, L., Vianello, M.: Efficient computation of the exponential operator for large, sparse, symmetric matrices. Numer. Linear Algebra Appl. 7, 27–45 (2000) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    De Bonis, M.C., Mastroianni, G., Viggiano, M.: K-functionals, moduli of smoothness and weighted best approximation of the semiaxis. In: Functions, Series, Operators. Budapest, 1999, pp. 181–211. János Bolyai Math. Soc., Budapest (2002) Google Scholar
  5. 5.
    Druskin, V.L., Knizhnerman, L.A.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 755–771 (1998) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix functions. SIAM J. Numer. Anal. 44, 2481–2504 (2006) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Frommer, A., Simoncini, V.: Error bounds for Lanczos approximations of rational functions of matrices. In: Numerical Validation in Current Hardware Architectures, pp. 203–216 (2008) Google Scholar
  8. 8.
    Frommer, A., Simoncini, V.: Matrix functions. In: Schilders, W.H., van der Vorst, H.A. (eds.) Model Order Reduction, pp. 203–216. Springer, Heidelberg (2008) Google Scholar
  9. 9.
    Frommer, A., Simoncini, V.: Stopping criteria for rational matrix functions of Hermitian and symmetric matrices. SIAM J. Sci. Comput. 30, 1387–1412 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Grimm, V.: A note on the Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 102, 61–66 (2005) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Grimm, V., Gugat, M.: Approximation of semigroups and related operator functions by resolvent series. SIAM J. Numer. Anal. 48(5), 1826–1845 (2010). doi: 10.1137/090768084 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A, Math. Gen. 39, 5495–5507 (2006) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Grimm, V., Hochbruck, M.: Rational approximation to trigonometric operators. BIT Numer. Math. 48(2), 215–229 (2008) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Grimm, V.: On the use of the Gautschi-type exponential integrator for wave equations. In: de Castro, A.B., Gómez, D., Quintela, P., Salgado, P. (eds.) Numerical Mathematics and Advanced Applications, ENUMATH 2005, pp. 557–563. Springer, Berlin (2006) CrossRefGoogle Scholar
  15. 15.
    Güttel, S.: Rational Krylov methods for operator functions, PhD thesis, TU Bergakademie Freiberg, Germany (2010) Google Scholar
  16. 16.
    Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2008) MATHCrossRefGoogle Scholar
  17. 17.
    Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010) MathSciNetMATHGoogle Scholar
  22. 22.
    Lopez, L., Simoncini, V.: Analysis of projection methods for rational function approximation to the matrix exponential. SIAM J. Numer. Anal. 44(2), 613–635 (2006) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Moret, I., Novati, P.: RD-rational approximations of the matrix exponential. BIT Numer. Math. 44, 595–615 (2004) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Moret, I., Novati, P.: Interpolating functions of matrices on zeros of quasi-kernel polynomials. Numer. Linear Algebra Appl. 11, 337–353 (2005) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Popolizio, M., Simoncini, V.: Acceleration techniques for approximating the matrix exponential operator. SIAM J. Matrix Anal. Appl. 30, 657–683 (2008) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002). doi: 10.1016/S0925-7721(01)00047-5. 16th ACM Symposium on Computational Geometry (Hong Kong, 2000) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 24(4), 1438–1457 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2011

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT), Fakultät für MathematikInstitut für Angewandte und Numerische MathematikKarlsruheGermany

Personalised recommendations