BIT Numerical Mathematics

, Volume 51, Issue 4, pp 1039–1050

A robust implementation of the Carathéodory-Fejér method for rational approximation



Best rational approximations are notoriously difficult to compute. However, the difference between the best rational approximation to a function and its Carathéodory-Fejér (CF) approximation is often so small as to be negligible in practice, while CF approximations are far easier to compute. We present a robust and fast implementation of this method in the Chebfun software system and illustrate its use with several examples. Our implementation handles both polynomial and rational approximation and substantially improves upon earlier published software.


Carathéodory-Fejér approximation Near-best rational approximation Chebfun 

Mathematics Subject Classification (2000)

41A50 41A20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamjan, V., Arov, D., Krein, M.: Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem. Math. USSR Sb. 15, 31–73 (1971) CrossRefGoogle Scholar
  2. 2.
    Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25(5), 1743–1770 (2004) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Carathéodory, C., Fejér, L.: Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz. Rend. Circ. Mat. Palermo 32, 218–239 (1911) MATHCrossRefGoogle Scholar
  4. 4.
    Gutknecht, M.H.: Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval. J. Approx. Theory 41(3), 257–278 (1984) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gutknecht, M.H., Trefethen, L.N.: Real polynomial Chebyshev approximation by the Carathéodory–Fejér method. SIAM J. Numer. Anal. 19(2), 358–371 (1982) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hayashi, E., Trefethen, L.N., Gutknecht, M.H.: The CF table. Constr. Approx. 6, 195–223 (1990) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM Rev. 21(4), 481–527 (1979) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, Berlin (1967) MATHGoogle Scholar
  9. 9.
    Newman, D.J.: Rational approximation to |x|. Mich. Math. J. 11, 11–14 (1964) MATHCrossRefGoogle Scholar
  10. 10.
    Pachón, R., Platte, R.B., Trefethen, L.N.: Piecewise-smooth chebfuns. IMA J. Numer. Anal. 30, 898–916 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Schmelzer, T., Trefethen, L.: Computing the gamma function using contour integrals and rational approximations. SIAM J. Numer. Anal. 45(2), 558–571 (2007) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I. J. Reine Angew. Math. 147, 205–232 (1917) CrossRefGoogle Scholar
  13. 13.
    Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. II. J. Reine Angew. Math. 148, 122–145 (1918) CrossRefGoogle Scholar
  14. 14.
    Stahl, H.: Uniform rational approximation of |x|. In: Methods of Approximation Theory in Complex Analysis and Mathematical Physics, Leningrad, 1991. Lecture Notes in Math., vol. 1550, pp. 110–130. Springer, Berlin (1993) CrossRefGoogle Scholar
  15. 15.
    Takagi, T.: On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau. Jpn. J. Math. 1, 83–93 (1924) Google Scholar
  16. 16.
    Takagi, T.: Remarks on an algebraic problem. Jpn. J. Math. 2, 13–17 (1925) MathSciNetGoogle Scholar
  17. 17.
    Trefethen, L.N.: Near-circularity of the error curve in complex Chebyshev approximation. J. Approx. Theory 31(4), 344–367 (1981) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Trefethen, L.N.: Rational Chebyshev approximation on the unit disk. Numer. Math. 37(2), 297–320 (1981) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Trefethen, L.N.: Chebyshev approximation on the unit disk. In: Werner, H., et al. (ed.) Computational Aspects of Complex Analysis, pp. 309–323. Reidel, Dordrecht (1983) Google Scholar
  20. 20.
    Trefethen, L.N.: Square blocks and equioscillation in the Padé, Walsh, and CF tables. In: Graves-Morris, P., Saff, E., Varga, R. (eds.) Rational Approximation and Interpolation. Lecture Notes in Mathematics, vol. 1105, Springer, Berlin (1984) CrossRefGoogle Scholar
  21. 21.
    Trefethen, L.N.: Matlab programs for CF approximation. In: Approximation Theory V, pp. 599–602. Academic Press, Boston (1986) Google Scholar
  22. 22.
    Trefethen, L.N., Gutknecht, M.H.: The Carathéodory–Fejér method for real rational approximation. SIAM J. Numer. Anal. 20(2), 420–436 (1983) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Trefethen, L., Weideman, J., Schmelzer, T.: Talbot quadratures and rational approximations. BIT Numer. Math. 46, 653–670 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Varga, R.S., Ruttan, A., Carpenter, A.J.: Numerical results on the best uniform rational approximations of the function |x| on the interval [−1,1]. Math. USSR Sb. 74(2), 271–290 (1993) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversiteit AntwerpenAntwerpenBelgium
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations