BIT Numerical Mathematics

, Volume 51, Issue 4, pp 809–844 | Cite as

The discontinuous Galerkin method for fractional degenerate convection-diffusion equations

  • Simone Cifani
  • Espen R. JakobsenEmail author
  • Kenneth H. Karlsen
Open Access


We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (Lévy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through numerical experiments.


Convection-diffusion equations Degenerate parabolic Conservation laws Fractional diffusion Entropy solutions Direct/local discontinuous Galerkin methods 

Mathematics Subject Classification (2000)

65M60 65M12 35K59 35R11 35K65 35L67 


  1. 1.
    Abels, H., Kassmann, K.: An analytic approach to purely nonlocal Bellman equations arising in models of stochastic control. J. Differ. Equ. 236(1), 29–56 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alibaud, N.: Entropy formulation for fractal conservation laws. J. Evol. Equ. 7(1), 145–175 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alibaud, N., Droniou, J., Vovelle, J.: Occurence and non-appearance of shocks in fractal Burgers equations. J. Hyperbolic Differ. Equ. 4(3), 479–499 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, G., Karlsen, K.H.: L 1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Am. Math. Soc. 358(3), 937–963 (2006) (electronic) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cifani, S., Jakobsen, E.R., Karlsen, K.H.: The discontinuous Galerkin method for fractal conservation laws. IMA J. Numer. Anal. (2010). doi: 10.1093/imanum/drq006
  6. 6.
    Cockburn, B.: An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems. Lecture Notes in Math., vol. 1697. Springer, Berlin (1998) Google Scholar
  7. 7.
    Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2004) zbMATHGoogle Scholar
  9. 9.
    Crandall, M.G., Tartar, L.: Some relations between nonexpansive and order preserving mappings. Proc. Am. Math. Soc. 78(3), 385–390 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dedner, A., Rohde, C.: Numerical approximation of entropy solutions for hyperbolic integro-differential equations. Numer. Math. 97(3), 441–471 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Droniou, J.: A numerical method for fractal conservation laws. Math. Comput. 79, 95–124 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Droniou, J., Imbert, C.: Fractal first order partial differential equations. Arch. Ration. Mech. Anal. 182(2), 299–331 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Espedal, M.S., Karlsen, K.H.: Numerical solution of reservoir flow models based on large time step operator splitting algorithms. In: Filtration in Porous Media and Industrial Applications (Cetraro, Italy, 1998), vol. 1734, pp. 9–77. Springer, Berlin (2000) CrossRefGoogle Scholar
  14. 14.
    Evje, S., Karlsen, K.H.: Viscous splitting approximation of mixed hyperbolic-parabolic convection-diffusion equations. Numer. Math. 83(1), 107–137 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Evje, S., Karlsen, K.H.: Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37(6), 1838–1860 (2000) (electronic) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995) zbMATHGoogle Scholar
  17. 17.
    Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws. Springer, New York (2002) zbMATHCrossRefGoogle Scholar
  18. 18.
    Holden, H., Karlsen, K.H., Lie, K.-A.: Operator splitting methods for degenerate convection-diffusion equations. I. Convergence and entropy estimates. In: Stochastic Processes, Physics and Geometry: New Interplays, vol. 29(II), pp. 293–316. Amer. Math. Soc., Providence (2000) Google Scholar
  19. 19.
    Holden, H., Karlsen, K.H., Lie, K.-A.: Operator splitting methods for degenerate convection-diffusion equations. II: numerical examples with emphasis on reservoir simulation and sedimentation. Comput. Geosci. 4(4), 287–322 (2000) zbMATHCrossRefGoogle Scholar
  20. 20.
    Jenny, H.: Error estimate for the local discontinuous Galerkin scheme of a diffusive-dispersive equation with convolution. In: Hyperbolic Problems: Theory, Numerics and Applications. Proc. Sympos. Appl. Math. vol. 67(2), pp. 615–624. Amer. Math. Soc., Providence (2009) Google Scholar
  21. 21.
    Jenny, H., Rohde, C.: Local discontinuous-Galerkin schemes for model problems in phase transition theory. Commun. Comput. Phys. 4, 860–893 (2008) MathSciNetGoogle Scholar
  22. 22.
    Jue, Y., Liu, H.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2008/09) MathSciNetGoogle Scholar
  23. 23.
    Karlsen, K.H., Risebro, N.H.: An operator splitting method for nonlinear convection-diffusion equations. Numer. Math. 77(3), 365–382 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Karlsen, K.H., Risebro, N.H.: Corrected operator splitting for nonlinear parabolic equations. SIAM J. Numer. Anal. 37(3), 980–1003 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Karlsen, K.H., Ulusoy, S.: Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations (2008, submitted) Google Scholar
  26. 26.
    Karlsen, K.H., Risebro, N.H., Towers, J.D.: L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 1–49 (2003) MathSciNetGoogle Scholar
  27. 27.
    Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York (1972) zbMATHGoogle Scholar
  28. 28.
    Lucier, B.: On Sobolev regularizations of hyperbolic conservation laws. Commun. Partial Differ. Equ. 10(1), 1–28 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Matalon, M.: Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163–191 (2007) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wu, Z., Yin, J.: Some properties of functions in BV x and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5(4), 395–422 (1989) MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Simone Cifani
    • 1
  • Espen R. Jakobsen
    • 1
    Email author
  • Kenneth H. Karlsen
    • 2
  1. 1.Department of MathematicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Centre of Mathematics for Applications (CMA), Department of MathematicsUniversity of OsloOsloNorway

Personalised recommendations