Advertisement

Computing the maximum transient energy growth

  • James F. WhidborneEmail author
  • Nathalie Amar
Article

Abstract

The calculation of maximum transient energy growth is a problem of interest in several areas of science and engineering. An algorithm that guarantees the calculation of this measure to an arbitrary accuracy in a finite number of steps is proposed for finite-dimensional linear-time-invariant dynamical systems. The algorithm is illustrated with a numerical example.

Keywords

Linear dynamical systems Transient growth Maximum transient energy growth 

Mathematics Subject Classification (2000)

26A12 37M99 65P99 

References

  1. 1.
    Amar, N.: Peaking in control systems: some numerical issues. Master’s thesis, Cranfield University, Bedfordshire, UK (2008) Google Scholar
  2. 2.
    Bewley, T., Liu, S.: Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech. 365, 305–349 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) zbMATHGoogle Scholar
  4. 4.
    Farrell, B.: Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31(8), 2093–2102 (1988) CrossRefGoogle Scholar
  5. 5.
    Hémon, P., Noger, C.: Transient growth of energy and aeroelastic stability of ground vehicles. C. R., Méc. 332, 175–180 (2004) CrossRefGoogle Scholar
  6. 6.
    Hinrichsen, D., Pritchard, A.: Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48. Springer, Berlin (2005) zbMATHGoogle Scholar
  7. 7.
    Kohaupt, L.: Differential calculus for some p-norms of the fundamental matrix with applications. J. Comput. Appl. Math. 135(1), 1–21 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kohaupt, L.: New upper bounds for free linear and nonlinear vibration systems with applications of the differential calculus of norms. Appl. Math. Model. 28, 367–388 (2004). doi: 10.1016/j.apm.2003.08.004 zbMATHCrossRefGoogle Scholar
  9. 9.
    McKernan, J., Whidborne, J., Papadakis, G.: Linear quadratic control of plane Poiseuille flow—the transient behaviour. Int. J. Control 80(12), 1912–1930 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Plischke, E.: Transient effects of linear dynamical systems. Ph.D. thesis, Universität Bremen (2005) Google Scholar
  12. 12.
    Plischke, E., Wirth, F.: Stabilization of linear systems with prescribed transient bounds. In: Proc. 16th Int. Symp. Math. Theory Networks & Syst. (MTNS2004), Leuven, Belgium (2004). http://www.math.uni-bremen.de/~elmar/papers/papers.html Google Scholar
  13. 13.
    Reddy, S., Henningson, D.: Energy growth in viscous channel flows. J. Fluid Mech. 252, 209–238 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Schmid, P., Henningson, D.: Stability and Transition in Shear Flows. Applied Mathematical Sciences, vol. 142. Springer, New York (2001) zbMATHCrossRefGoogle Scholar
  15. 15.
    Sempf, M., Merkel, P., Strumberger, E., Tichmann, C., Günter, S.: Robust control of resistive wall modes using pseudospectra. New J. Phys. 11(5), 053015 (2009). http://stacks.iop.org/1367-2630/11/i=5/a=053015 CrossRefGoogle Scholar
  16. 16.
    Thompson, C., Battisti, D.: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate 13(15), 2818–2832 (2000) CrossRefGoogle Scholar
  17. 17.
    Trefethen, L., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005) zbMATHGoogle Scholar
  18. 18.
    Trefethen, L., Trefethen, A., Reddy, S., Driscoll, T.: Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993) MathSciNetCrossRefGoogle Scholar
  19. 19.
    van Loan, C.: The sensitivity of the matrix exponential. SIAM J. Numer. Anal. 14(6), 971–981 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Veselić, K.: Bounds for exponentially stable semigroups. Linear Algebra Appl. 358, 309–333 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Whidborne, J., McKernan, J.: On minimizing maximum transient energy growth. IEEE Trans. Autom. Control 52(9), 1762–1767 (2007) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Whidborne, J., McKernan, J., Papadakis, G.: Minimising transient energy growth in plane Poiseuille flow. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 222(5), 323–331 (2008). doi: 10.1243/09596518JSCE493 CrossRefGoogle Scholar
  23. 23.
    Zhao, H., Bau, H.: Limitations of linear control of thermal convection in a porous medium. Phys. Fluids 18(7), 074109 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringCranfield UniversityBedfordshireUK

Personalised recommendations