BIT Numerical Mathematics

, Volume 50, Issue 4, pp 781–795 | Cite as

Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions

  • Michael J. Holst
  • Mats G. Larson
  • Axel Målqvist
  • Robert Söderlund
Open Access
Article

Abstract

In this paper we present a finite element discretization of the Joule-heating problem. We prove existence of solution to the discrete formulation and strong convergence of the finite element solution to the weak solution, up to a sub-sequence. We also present numerical examples in three spatial dimensions. The first example demonstrates the convergence of the method in the second example we consider an engineering application.

Keywords

Finite element methods Joule heating problem Convergence analysis 

Mathematics Subject Classification (2000)

65N30 35J60 

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, San Diego (1978) Google Scholar
  2. 2.
    Akrivis, G., Larsson, S.: Linearly implicit finite element methods for the time-dependent Joule heating problem. BIT 45, 429–442 (2005) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Boccardo, L., Orsina, L., Poretta, A.: Existence of finite energy solutions for elliptic systems with L 1 valued nonlinearities. Math. Models Methods Appl. Sci. 18(5), 669–687 (2008) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bradji, A., Herbin, R.: Discretization of the coupled heat and electrical diffusion problems by the finite element and the finite volume methods. IMA J. Numer. Anal. 28(3), 469–495 (2008) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Casado-Díaz, J., Chacón Rebollo, T., Girault, V., Mármol Gómez, M., Murat, F.: Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1. Numer. Math. 105(3), 337–374 (2007) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, L., Holst, M., Xu, J.: The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J. Numer. Anal. 45(6), 2298–2320 (2007) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Elliott, C.M., Larsson, S.: A finite element model for the time-dependent Joule heating problem. Math. Comput. 64, 1433–1453 (1995) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gallouët, T., Herbin, R.: Existence of a solution to a coupled elliptic system. Appl. Math. Lett. 7(2), 49–55 (1994) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Henneken, V.A., Tichem, M., Sarro, P.M.: In-package MEMS-based thermal actuators for micro-assembly. J. Micromech. Microeng. 16(6), 107–115 (2006) CrossRefGoogle Scholar
  10. 10.
    Holst, M.J., Tsogtgerel, G., Zhu, Y.: Local convergence of adaptive methods for nonlinear partial differential equations. arXiv:1001.1382v1
  11. 11.
    Kerkhoven, T., Jerome, J.W.: L stability of finite element approximations to elliptic gradient equations. Numer. Math. 57, 561–575 (1990) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Stampacchia, G.: L probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1), 189–258 (1965) MATHMathSciNetGoogle Scholar
  13. 13.
    Sun-Sig, B.: Elliptic equations with BMO coefficients in Lipschitz domains. Trans. Am. Math. Soc. 357(3), 1025–1046 (2004) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Michael J. Holst
    • 1
  • Mats G. Larson
    • 2
  • Axel Målqvist
    • 3
  • Robert Söderlund
    • 2
  1. 1.Department of MathematicsUniversity of California at San DiegoLa JollaUSA
  2. 2.Department of MathematicsUmeå UniversityUmeåSweden
  3. 3.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations