Advertisement

BIT Numerical Mathematics

, Volume 50, Issue 3, pp 587–607 | Cite as

The dual weighted residuals approach to optimal control of ordinary differential equations

  • Karin KraftEmail author
  • Stig Larsson
Article

Abstract

The methodology of dual weighted residuals is applied to an optimal control problem for ordinary differential equations. The differential equations are discretized by finite element methods. An a posteriori error estimate is derived and an adaptive algorithm is formulated. The algorithm is implemented in Matlab and tested on a simple model problem from vehicle dynamics.

Keywords

Finite element A posteriori Error estimate Adaptive Dual weighted residual Boundary value problem Differential-algebraic Vehicle dynamics 

Mathematics Subject Classification (2000)

65L60 49K15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001) zbMATHGoogle Scholar
  3. 3.
    Bryson, A.E. Jr., Ho, Y.: Applied Optimal Control. Hemisphere Publishing Corporation, Washington (1975) Google Scholar
  4. 4.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996) zbMATHGoogle Scholar
  5. 5.
    Estep, D., Hodges, D.H., Warner, M.: Computational error estimation and adaptive error control for a finite element solution of launch vehicle trajectory problems. SIAM J. Sci. Comput. 21, 1609–1631 (1999), (electronic) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kraft, K., Larsson, S., Lidberg, M.: Using an adaptive FEM to determine the optimal control of a vehicle during a collision avoidance manoeuvre. In: Proceedings of the 48th Scandinavian Conference on Simulation and Modeling (SIMS2007). Linköping University Electronic Press, Linköping (2007). http://www.ep.liu.se/ecp/027/ Google Scholar
  7. 7.
    Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46, 116–142 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pacejka, H.B.: Tyre and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2006) Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematical SciencesChalmers University of Technology and University of GothenburgGothenburgSweden

Personalised recommendations