BIT Numerical Mathematics

, Volume 50, Issue 3, pp 587–607 | Cite as

The dual weighted residuals approach to optimal control of ordinary differential equations

  • Karin KraftEmail author
  • Stig Larsson


The methodology of dual weighted residuals is applied to an optimal control problem for ordinary differential equations. The differential equations are discretized by finite element methods. An a posteriori error estimate is derived and an adaptive algorithm is formulated. The algorithm is implemented in Matlab and tested on a simple model problem from vehicle dynamics.


Finite element A posteriori Error estimate Adaptive Dual weighted residual Boundary value problem Differential-algebraic Vehicle dynamics 

Mathematics Subject Classification (2000)

65L60 49K15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001) zbMATHGoogle Scholar
  3. 3.
    Bryson, A.E. Jr., Ho, Y.: Applied Optimal Control. Hemisphere Publishing Corporation, Washington (1975) Google Scholar
  4. 4.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996) zbMATHGoogle Scholar
  5. 5.
    Estep, D., Hodges, D.H., Warner, M.: Computational error estimation and adaptive error control for a finite element solution of launch vehicle trajectory problems. SIAM J. Sci. Comput. 21, 1609–1631 (1999), (electronic) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kraft, K., Larsson, S., Lidberg, M.: Using an adaptive FEM to determine the optimal control of a vehicle during a collision avoidance manoeuvre. In: Proceedings of the 48th Scandinavian Conference on Simulation and Modeling (SIMS2007). Linköping University Electronic Press, Linköping (2007). Google Scholar
  7. 7.
    Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46, 116–142 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pacejka, H.B.: Tyre and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2006) Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematical SciencesChalmers University of Technology and University of GothenburgGothenburgSweden

Personalised recommendations