BIT Numerical Mathematics

, Volume 50, Issue 2, pp 331–376 | Cite as

Front tracking for a model of immiscible gas flow with large data



In this paper we study front tracking for a model of one dimensional, immiscible flow of several isentropic gases, each governed by a gamma-law. The model consists of the p-system with variable gamma representing the different gases. The main result is the convergence of a front tracking algorithm to a weak solution, thereby giving existence as well. This convergence holds for general initial data with a total variation satisfying a specific bound. The result is illustrated by numerical examples.


p-system Gamma law Mixture of gases 

Mathematics Subject Classification (2000)

35L65 76N15 35A05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amadori, D., Corli, A.: On a model of multiphase flow. SIAM J. Math. Anal. 40(1), 134–166 (2008) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Asakura, F.: Wave-front tracking for the equation of non-isentropic gas dynamics. RIMS Kokyuroku 1495, 78–91 (2006) Google Scholar
  3. 3.
    Asakura, F.: Wave-front tracking for the equation of isentropic gas dynamics. Q. Appl. Math. 63(1), 20–33 (2005) MATHMathSciNetGoogle Scholar
  4. 4.
    Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford University Press, London (2000) MATHGoogle Scholar
  5. 5.
    Bressan, A., Colombo, R.M.: Unique solutions of 2×2 conservation laws with large data. Indiana Univ. Math. J. 44(3), 677–725 (1993) MathSciNetGoogle Scholar
  6. 6.
    Chalons, C., Coquel, F.: Navier–Stokes equations with several independent pressure laws and explicit predictor-corrector schemes. Numer. Math. 101, 451–478 (2005) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, G.-Q., Christoforou, C., Zhang, Y.: Dependence of entropy solutions in the large for the Euler equations on nonlinear flux functions. Indiana Univ. Math. J. 56(5), 2535–2567 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, G.-Q., Christoforou, C., Zhang, Y.: Continuous dependence of entropy solutions to the Euler equations on the adiabatic exponent and Mach number. Arch. Ration. Mech. Anal. 189, 97–130 (2008) CrossRefMathSciNetGoogle Scholar
  9. 9.
    DiPerna, R.J.: Existence in the large for quasilinear hyperbolic conservation laws. Arch. Ration. Mech. Anal. 52, 244–257 (1973) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245(9), 2660–2703 (2008) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fan, H.: On a model of the dynamics of liquid/vapor phase transitions. SIAM J. Appl. Math. 60(4), 1270–1301 (2000) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Glimm, J.: Solution in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, Berlin (2007), revised printing Google Scholar
  14. 14.
    Holden, H., Risebro, N.H., Sande, H.: The solution of the Cauchy problem with large data for a model of a mixture of gases. J. Hyperbolic Differ. Equ. 6(1), 25–106 (2009) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Liu, T.-P.: Solutions in the large for the equations of nonisentropic gas dynamics. Indiana Univ. Math. J. 26(1), 147–177 (1977) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Liu, T.P., Smoller, J.A.: On the vacuum state for the isentropic gas dynamics equations. Adv. Appl. Math. 1(4), 345–359 (1980) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lu, Y.: Hyperbolic Conservation Laws and the Compensated Compactness Method. Shapman&Hall/CRC, Boca Raton (2003) MATHGoogle Scholar
  18. 18.
    Nishida, T.: Global solution for an initial boundary value problem for a quasilinear hyperbolic system. Proc. Jpn. Acad. 44, 642–646 (1968) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nishida, T., Smoller, J.A.: Solution in the large for some nonlinear hyperbolic conservation laws. Commun. Pure Appl. Math. 26, 183–200 (1973) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Peng, Y.-J.: Solutions faibles globales pour l’quation d’Euler d’un fluide compressible avec de grandes donnees initales. Commun. Partial Differ. Equ. 17(1–2), 161–187 (1992) MATHGoogle Scholar
  21. 21.
    Peng, Y.-J.: Solutions faibles globales pour un modèle d’écoulements diphasiques. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 21(4), 523–540 (1994) MATHGoogle Scholar
  22. 22.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, Berlin (1994) MATHGoogle Scholar
  23. 23.
    Temple, J.B.: Solution in the large for the nonlinear hyperbolic conservation laws of gas dynamics. J. Differ. Equ. 41, 96–161 (1981) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Temple, B., Young, R.: The large time stability of sound waves. Commun. Math. Phys. 179(2), 417–466 (1996) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wagner, D.H.: Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equ. 68(1), 118–136 (1987) MATHCrossRefGoogle Scholar
  26. 26.
    Wissman, B.D.: Global solutions to the ultra-relativistic Euler equations. arXiv:0705.1333v1 [math.AP] 9 May 2007
  27. 27.
    Yong, W.-A.: A simple approach to Glimm’s interaction estimates. Appl. Math. Lett. 12(2), 29–34 (1999) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2010

Authors and Affiliations

  • Helge Holden
    • 1
    • 2
  • Nils Henrik Risebro
    • 2
  • Hilde Sande
    • 1
  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Centre of Mathematics for ApplicationsUniversity of OsloOsloNorway

Personalised recommendations