On computation of test dipoles for factorization method

Article

Abstract

In electrical impedance tomography, one tries to recover the spatial conductivity distribution inside a body from boundary measurements of current and voltage. In many important situations, the examined object has known background conductivity but is contaminated by inhomogeneities. The factorization method of Kirsch provides a tool for locating such inclusions. The computational attractiveness of the factorization technique relies heavily on efficient computation of Dirichlet boundary values of potentials created by dipole sources located inside the examined object and corresponding to the homogeneous Neumann boundary condition and to the known background conductivity. In certain simple situations, these test potentials can be written down explicitly or given with the help of suitable analytic maps, but, in general, they must be computed numerically. This work introduces an inexpensive algorithm for approximating the test potentials in the framework of real-life electrode measurements and analyzes how well this technique can be imbedded in the factorization method. The performance of the resulting fast reconstruction algorithm is tested in two spatial dimensions.

Keywords

Factorization method Inclusions hp-FEM Electrical impedance tomography Complete electrode model 

Mathematics Subject Classification (2000)

65N21 

References

  1. 1.
    Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006) MATHCrossRefGoogle Scholar
  2. 2.
    Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brühl, M.: Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32, 1327–1341 (2001) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brühl, M., Hanke, M.: Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Probl. 16, 1029–1042 (2000) MATHCrossRefGoogle Scholar
  5. 5.
    Calderón, A.P.: On an inverse boundary value problem. In: Meyer, W.H., Raupp, M.A. (eds.) Seminar on Numerical Analysis and Its Application to Continuum Physics, pp. 65–73. Brasil. Math. Soc., Rio de Janeiro (1980) Google Scholar
  6. 6.
    Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cheng, K.-S., Isaacson, D., Newell, J.S., Gisser, D.G.: Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36, 918–924 (1989) CrossRefGoogle Scholar
  8. 8.
    Driscoll, T.A.: Algorithm 756; a MATLAB toolbox for Schwarz-Christoffel mapping. ACM Trans. Math. Soft. 22, 168–186 (1996) MATHCrossRefGoogle Scholar
  9. 9.
    Gebauer, B., Hyvönen, N.: Factorization method and irregular inclusions in electrical impedance tomography. Inverse Probl. 23, 2159–2170 (2007) MATHCrossRefGoogle Scholar
  10. 10.
    Hanke, M., Brühl, M.: Recent progress in electrical impedance tomography. Inverse Probl. 19, S65–S90 (2003) MATHCrossRefGoogle Scholar
  11. 11.
    Hyvönen, N.: Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions. SIAM J. Appl. Math. 64, 902–931 (2004) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hyvönen, N., Hakula, H., Pursiainen, S.: Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Probl. Imaging 1, 299–317 (2007) MATHMathSciNetGoogle Scholar
  13. 13.
    Hyvönen, N.: Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math. Models Methods Appl. Sci. (accepted) Google Scholar
  14. 14.
    Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Probl. 14, 1489–1512 (1998) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lechleiter, A.: A regularization technique for the factorization method. Inverse Probl. 22, 1605–1625 (2006) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lechleiter, A., Hyvönen, N., Hakula, H.: The factorization method applied to the complete electrode model of impedance tomography. SIAM J. Appl. Math. 68, 1097–1121 (2008) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143, 71–96 (1996) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pursiainen, S., Hakula, H.: A high-order finite element method for electrical impedance tomography. In: Progress in Electromagnetics Research Symposium, vol. 1, p. 260. The Electromagnetics Academy, Cambridge (2006) Google Scholar
  19. 19.
    Szabo, B., Babuska, I.: Finite Element Analysis. Wiley, New York (1991) MATHGoogle Scholar
  20. 20.
    Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52, 1023–1040 (1992) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of MathematicsHelsinki University of TechnologyEspooFinland

Personalised recommendations