BIT Numerical Mathematics

, Volume 48, Issue 2, pp 215–229 | Cite as

Rational approximation to trigonometric operators

Article

Abstract

We consider the approximation of trigonometric operator functions that arise in the numerical solution of wave equations by trigonometric integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behavior if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we propose and analyze a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators. In contrast to standard Krylov methods, the convergence will be independent of the norm of the operator and thus of its spatial discretization. We will discuss efficient implementations for finite element discretizations and illustrate our analysis with numerical experiments.

Key words

rational Krylov subspace methods trigonometric operator function Hilbert space wave equations trigonometric integrators highly oscillatory problems finite element discretization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bergamaschi and M. Vianello, Efficient computation of the exponential operator for large, sparse, symmetric matrices, Numer. Linear Algebra Appl., 7 (2000), pp. 27–45.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Cohen, E. Hairer, and C. Lubich, Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions, Arch. Ration. Mech. Anal., 187 (2008), pp. 341–368.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Cohen, E. Hairer, and C. Lubich, Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations, to appear in Numer. Math. (2008).Google Scholar
  4. 4.
    D. Cohen, E. Hairer, and C. Lubich, Energy conservation over long times of numerical discretizations for nonlinear wave equations, to appear in Proceedings of Equadiff07, (2008).Google Scholar
  5. 5.
    V. A. Dougalis and S. M. Serbin, Remarks on a class of rational approximations to the cosine, BIT, 20 (1980), pp. 204–211.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    V. L. Druskin and L. A. Knizhnerman, Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–771.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Eiermann and O. Ernst, A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481–2504.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Frommer and V. Simoncini, Stopping criteria for rational matrix functions of Hermitian and symmetric matrices, SIAM J. Sci. Comput., 30 (2008), pp. 1387–1412.CrossRefMathSciNetGoogle Scholar
  9. 9.
    B. García-Archilla, J. Sanz-Serna, and R. Skeel, Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput., 30(3) (1998), pp. 930–963.CrossRefGoogle Scholar
  10. 10.
    G. H. Golub and C. F. van Loan, Matrix Computations, 2nd edn., Johns Hopkins University Press, Baltimore, MD, 1989.MATHGoogle Scholar
  11. 11.
    V. Grimm, A note on the Gautschi-type method for oscillatory second-order differential equations, Numer. Math., 102 (2005), pp. 61–66.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    V. Grimm, On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations, Numer. Math., 100 (2005), pp. 71–89.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    V. Grimm, On the use of the Gautschi-type exponential integrator for wave equations, in Numerical Mathematics and Advanced Applications, ENUMATH 2005, A. Bermúdez de Castro, D. Gómez, P. Quintela, and P. Salgado, eds., Springer, Berlin, Heidelberg, 2006, pp. 557–563.CrossRefGoogle Scholar
  14. 14.
    V. Grimm and M. Hochbruck, Error analysis of exponential integrators for oscillatory second-order differential equations, J. Phys. A, Math. Gen., 39 (2006), pp. 5495–5507.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    E. Hairer and C. Lubich, Long-time energy conservation of numerical methods for oscillatory differential equations, SIAM J. Numer. Anal., 38 (2000), pp. 414–441.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Hairer and C. Lubich, Spectral semi-discretisations of weakly nonlinear wave equations over long times, Found. Comput. Math., 8 (2008), pp. 319–334.CrossRefGoogle Scholar
  17. 17.
    E. Hairer and C. Lubich, Oscillations over long times in numerical Hamiltonian systems, to appear in Proceedings of the HOP programme, Isaac Newton Institute, 2008.Google Scholar
  18. 18.
    M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Hochbruck and C. Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math., 83 (1999), pp. 403–426.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Lopez and V. Simoncini, Analysis of projection methods for rational function approximation to the matrix exponential, SIAM J. Numer. Anal., 44(2) (2006), pp. 613–635.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44 (2004), pp. 595–615.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    I. Moret and P. Novati, Interpolating functions of matrices on zeros of quasi-kernel polynomials, Numer. Linear Algebra Appl., 11 (2005), pp. 337–353.CrossRefMathSciNetGoogle Scholar
  23. 23.
    O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.MATHGoogle Scholar
  24. 24.
    P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge University Press, Cambridge, 1987.MATHGoogle Scholar
  25. 25.
    M. Popolizio and V. Simoncini, Accerleration techniques for approximating the matrix exponential operator, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 657–683.CrossRefGoogle Scholar
  26. 26.
    A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl., 58 (1984), pp. 391–405.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29 (1992), pp. 209–228.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    J. M. Sanz-Serna, Mollified impulse methods for highly-oscillatory differential equations, SIAM J. Numer. Anal., 46 (2008), pp. 1040–1059.CrossRefMathSciNetGoogle Scholar
  29. 29.
    G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, Berlin, Heidelberg, 2002.MATHGoogle Scholar
  30. 30.
    A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press, Oxford, 1963.MATHGoogle Scholar
  31. 31.
    J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 24(4) (2006), pp. 1438–1457.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Mathematisches InstitutHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations