BIT Numerical Mathematics

, Volume 48, Issue 2, pp 285–307 | Cite as

Blow up of incompressible Euler solutions

Article

Abstract

We present analytical and computational evidence of blowup of initially smooth solutions of the incompressible Euler equations into non-smooth turbulent solutions. We detect blowup by observing increasing L2-residuals of computed solutions under decreasing mesh size.

Key words

blowup of Euler solutions weak solution general Galerkin finite element method Clay millenium prize 

References

  1. 1.
    J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions of the Euler equations, Commun. Math. Phys., 94 (1984), pp. 61–66.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. L. Bona, W. G. Pritchard, and L. R. Scott, A posteriori error estimates for exact and approximate solutions of time-dependent problems, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Colecao ATAS 12, Sociedade Brasileira de Matematica, 1980, pp. 102–111.Google Scholar
  3. 3.
    G. Birkhoff, Hydrodynamics: A Study in Logic, Fact and Similitude, Princeton University Press, Princeton, 1950.MATHGoogle Scholar
  4. 4.
    S. Chernyshenko, P. Constantin, J. Robinson, and E. Titi, A posteriori regularity of the three-dimensional Navier–Stokes equations from computations, to appear in J. Math. Phys.Google Scholar
  5. 5.
    P. Constantin, Euler equations, Navier–Stokes equations and turbulence, in Lectures given at the C.I.M.E. Summer School (Martina Franca, Italy, 2003), M. Cannone and T. Miyakawa, eds., Springer Lect. Notes Math., vol. 1871, 2005, pp. 1–43.Google Scholar
  6. 6.
    P. Constantin, On the Euler equations of incompressible fluids, Bull. Am. Math. Soc., 44 (2007), pp. 603–21.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. Fefferman, Existence And Smoothness Of The Navier–Stokes Equations, Official Clay Mathematics Institute Millennium Problem For The Navier–Stokes Equations, www.claymath.org.Google Scholar
  8. 8.
    E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.MATHGoogle Scholar
  9. 9.
    J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton Univ. Bull., 13 (1902), pp. 49–52.MathSciNetGoogle Scholar
  10. 10.
    J. Deng, T. Y. Hou, and X. Yu, Geometric properties and the non-blowup of the three-dimensional Euler equation, Commun. Partial Differ. Equations, 30(1) (2005), pp. 225–243.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Deng, T. Y. Hou, and X. Yu, Improved geometric conditions for non-blowup of the 3D incompressible Euler equation, Commun. Partial Differ. Equations, 31 (2006), pp. 293–306.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Y. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations, J. Nonlinear Sci., 16 (2006), pp. 639–664.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Hoffman, Computational study of the effect of rotation in a model of the turbulent flow due to a cylinder rolling along ground, submitted.Google Scholar
  14. 14.
    J. Hoffman, Simulation of turbulent flow past bluff bodies on coarse meshes using General Galerkin methods: drag crisis and turbulent Euler solutions, Comput. Mech., 38 (2006), pp. 390–402.CrossRefMathSciNetGoogle Scholar
  15. 15.
    J. Hoffman and M. Nazarov, Euler general Galerkin simulation of the turbulent flow past a car, in preparation.Google Scholar
  16. 16.
    J. Hoffman, Euler general Galerkin simulation of the turbulent flow past an airfoil at take-off, in preparation.Google Scholar
  17. 17.
    J. Hoffman, Simulation drag crisis for a sphere using skin friction boundary conditions, Proc. ECCOMAS CFD, 2006.Google Scholar
  18. 18.
    J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow, Springer, Heidelberg, 2007.MATHGoogle Scholar
  19. 19.
    J. Hoffman and C. Johnson, Computational Thermodynamics, to appear, 2008.Google Scholar
  20. 20.
    J. Hoffman and C. Johnson, Resolution of d’Alembert’s paradox, to appear in J. Math. Fluid Mech.Google Scholar
  21. 21.
    J. Hoffman and C. Johnson, Separation in slightly viscous flows, in preparation.Google Scholar
  22. 22.
    J. Hoffman and C. Johnson, Why it is possible to fly, in preparation.Google Scholar
  23. 23.
    P. Moin and J. Kim, Tackling turbulence by supercomputers, Sci. Am. (1997).Google Scholar
  24. 24.
    G. Ponce, Remarks on a paper by J. T. Beale, T. Kato and A. Majda, Commun. Math. Phys., 98 (1985), pp. 349–352.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    J. Stoker, Bull. Am. Math. Soc., 57(6) (1951), pp. 497–99.Google Scholar
  26. 26.
    T. Tao, http://terrytao.wordpress.com/2007/03/18/why-global-regularity-for-navier-stokes-is-hard/Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Computer Science and CommunicationRoyal Institute of TechnologyStockholmSweden

Personalised recommendations