BIT Numerical Mathematics

, Volume 48, Issue 1, pp 1–2 | Cite as



BIT papers with Gene Golub as author

  1. 1.
    G. H. Golub, Bounds for the round-off errors in the Richardson second order method, BIT, 2 (1962), pp. 212–223.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    W. P. Tang and G. H. Golub, The block decomposition of a Vandermonde matrix and its applications, BIT, 21 (1981), pp. 505–517.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. H. Golub and R. Kannan, Convergence of a two-stage Richardson process for nonlinear equations, BIT, 26 (1986), pp. 209–216.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    S. Elhay, G. H. Golub and J. Kautsky, Jacobi matrices for sums of weight functions, BIT, 32 (1992), pp. 143–166.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. Gander, G. H. Golub and R. Strebel, Least-squares fitting of circles and ellipses, BIT, 34 (1994), pp. 558–578.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    G. H. Golub and G. Meurant, Matrices, moments and quadrature II: How to compute the norm of the error in iterative methods, BIT, 37 (1997), pp. 687–705.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with applications to preconditioning, BIT, 39 (1999), pp. 417–438.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Calvetti, G. H. Golub and L. Reichel, Estimation of the L-Curve via Lanczos bidiagonalization, BIT, 39 (1999), pp. 603–619.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G. H. Golub and Q. Ye, Inexact inverse iteration for generalized eigenvalue problems, BIT, 40 (2000), pp. 671–684.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. H. Golub, X. Wu and J.-Y. Yuan, SOR-like methods for augmented systems, BIT, 41 (2001), pp. 71–85.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G. H. Golub and H. Melbø, A stochastic approach to error estimates for iterative linear solvers: Part 1, BIT, 41 (2001), pp. 977–985.CrossRefMathSciNetGoogle Scholar
  12. 12.
    G. H. Golub and J.-Y. Yuan, Symmetric-triangular decomposition and its applications part I: Theorems and algorithms, BIT, 42 (2002), pp. 814–822.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Benzi, M. J. Gander and G. H. Golub, Optimization of the Hermitian and Skew-Hermitian splitting iteration for saddle-point problems, BIT, 43 (2003), pp. 881–900.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Y. Yuan, G. H. Golub, R. J. Plemmons and W. A. G. Cecílio, Semi-conjugate direction methods for real positive definite systems, BIT, 44 (2004), pp. 189–207.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    D. M. Sima, S. Van Huffel and G. H. Golub, Regularized total least squares based on quadratic eigenvalue problem solvers, BIT, 44 (2004), pp. 793–812.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R. H. Bartels, G. H. Golub and F. F. Samavati, Some observations on local least squares, BIT, 46 (2006), pp. 455–477.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    G. H. Golub and C. Greif, An Arnoldi-type algorithm for computing page rank, BIT, 46 (2006), pp. 759–771.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    X. Wu, G. H. Golub, J. A. Cuminato and J. Y. Yuan, Symmetric-triangular decomposition and its applications, Part II: Preconditioners for indefinite systems, BIT, 48 (2008), pp. 137–160.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Numerical Analysis and Computer Science (NADA)Royal Institute of Technology (KTH)StockholmSweden

Personalised recommendations