BIT Numerical Mathematics

, Volume 47, Issue 4, pp 699–713

Sinc-based computations of eigenvalues of Dirac systems



The celebrated classical sampling theorem is used to compute approximate values of the eigenvalues of Dirac systems with eigenvalue parameter in the boundary conditions. We deal with problems with an eigenparameter in one or two boundary conditions. The error analysis is established considering both truncation and amplitude errors associated with the sampling theorem. We indicate the role of the amplitude error as well as other parameters in the method via illustrative examples.

Key words

Dirac systems eigenvalue problems with eigenparameter in the boundary conditions sinc methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Z. Abd-alla and M. H. Annaby, Sampling of vector-valued transforms associated with Green’s matrix of Dirac systems, J. Math. Anal. Appl., 284 (2003), pp. 104–117.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. H. Annaby and R. M. Asharabi, On sinc-based method in computing eigenvalues of boundary value problems, to appear in SIAM J. Num. Anal.Google Scholar
  3. 3.
    M. H. Annaby and M. M. Tharwat, On sampling and Dirac systems with eigenparameter in the boundary conditions, submitted.Google Scholar
  4. 4.
    A. Boumenir, The sampling method for Sturm–Liouville problems with the eigenvalue parameter in the boundary condition, Numer. Funct. Anal. Optimization, 21 (2000), pp. 67–75.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. L. Butzer, G. Schmeisser and R. L. Stens, An introduction to sampling analysis, in Non Uniform Sampling: Theory and Practices, F. Marvasti (ed.), Kluwer, New York (2001), pp. 17–121.Google Scholar
  6. 6.
    P. L. Butzer, W. Splettstösser and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein., 90 (1988), pp. 1–70.MATHGoogle Scholar
  7. 7.
    K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, Berlin, 1989.MATHGoogle Scholar
  8. 8.
    D. Jagerman, Bounds for truncation error of the sampling expansion, SIAM. J. Appl. Math., 14 (1966), pp. 714–723.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    N. B. Kerimov, A boundary value problem for the Dirac system with a spectral parameter in the boundary conditions, Differ. Equations, 38 (2002), pp. 164–174.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. M. Levitan and I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, in Translation of Mathematical Monographs, vol. 39, American Mathematical Society, Providence, 1975.Google Scholar
  11. 11.
    B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer Acadamic, Dordrecht, 1991.Google Scholar
  12. 12.
    J. Lund and K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992.MATHGoogle Scholar
  13. 13.
    F. Stenger, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev., 23 (1981), pp. 165–224.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York, 1993.MATHGoogle Scholar
  15. 15.
    A. I. Zayed and A. G. García, Sampling theorem associated with Dirac operator and Hartley transform, J. Math. Anal. Appl., 214 (1997), pp. 587–598.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mathematics & PhysicsQatar UniversityDohaQatar
  2. 2.Department of MathematicsBeni Suef UniversityBeni SuefEgypt

Personalised recommendations