Abstract
We have implemented in Matlab a Gauss-like cubature formula over convex, nonconvex or even multiply connected polygons. The formula is exact for polynomials of degree at most 2n-1 using N∼mn 2 nodes, m being the number of sides that are not orthogonal to a given line, and not lying on it. It does not need any preprocessing like triangulation of the domain, but relies directly on univariate Gauss–Legendre quadrature via Green’s integral formula. Several numerical tests are presented.
This is a preview of subscription content, log in to check access.
References
- 1.
T. M. Apostol, Calculus, vol. II, 2nd edn., Blaisdell, Waltham, MA, 1969.
- 2.
J. Berntsen and T. O. Espelid, Algorithm 706: DCUTRI: An algorithm for adaptive cubature over a collection of triangles, ACM Trans. Math. Softw., 18(3) (1992), pp. 329–342.
- 3.
R. Cools, An encyclopaedia of cubature formulas, J. Complexity, 19(3) (2003), pp. 445–453.
- 4.
A. R. DiDonato and R. K. Hageman, A method for computing the integral of the bivariate normal distribution over an arbitrary polygon, SIAM J. Sci. Stat. Comput., 3(4) (1982), pp. 434–446.
- 5.
C. F. Dunkl, Orthogonal polynomials on the hexagon, SIAM J. Appl. Math., 47(2) (1987), pp. 343–351.
- 6.
C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encycl. Math. Appl., vol. 81, Cambridge University Press, Cambridge, 2001.
- 7.
W. Gautschi, Orthogonal polynomials: computation and approximation, in Numerical Mathematics and Scientific Computation, Oxford Science Publications, Oxford University Press, New York, 2004 (software available at http://www.cs.purdue.edu/archives/2002/wxg/codes).
- 8.
W. Gautschi, Orthogonal polynomials (in Matlab), J. Comput. Appl. Math., 178 (2005), pp. 215–234.
- 9.
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edn., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.
- 10.
G. Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, Nottingham, 1828.
- 11.
A. Guessab, On the approximate calculation of integrals on a polygon in R 2, in Numerical Methods and Approximation Theory, III (Niš, 1987), pp. 225–239 Univ. Niš, Niš, 1988.
- 12.
A. I. Ivanova, Certain cases of L. A. Lyusternik’s cubature formula for regular polygons (Russian), Vyčisl. Mat. Vyčisl. Tehn. 1, (1953), pp. 27–36.
- 13.
M. Held, FIST: Fast industrial-strength triangulation of polygons, Algorithmica, 30(4) (2001), pp. 563–596.
- 14.
V. I. Krylov, Approximate Calculation of Integrals, The Macmillan Co., New York London, 1962.
- 15.
J. A. Liggett, Exact formulae for areas, volumes and moments of polygons and polyhedra, Comm. Appl. Numer. Methods, 4(6) (1988), pp. 815–820.
- 16.
J. N. Lyness and R. Cools, A survey of numerical cubature over triangles, in Mathematics of Computation 1943–1993: a half-century of computational mathematics, Vancouver, BC, 1993, Proc. Sympos. Appl. Math., vol. 48, pp. 127–150, Am. Math. Soc., Providence, RI, 1994.
- 17.
The MathWorks, MATLAB documentation set, 2006 version (available online at http://www.mathworks.com).
- 18.
A. Narkhede and D. Manocha, Graphics Gems 5, A. Paeth, ed., Academic Press, Boston, MA, 1995.
- 19.
M. Nooijen, G. te Velde, and E. J. Baerends, Symmetric numerical integration formulas for regular polygons, SIAM J. Numer. Anal., 27(1) (1990), pp. 98–218.
- 20.
W. Pleśniak, Remarks on Jackson’s theorem in ℝN, East J. Approx., 2(3) (1996), pp. 301–308.
- 21.
H. T. Rathod and H. S. Govinda Rao, Integration of trivariate polynomials over linear polyhedra in Euclidean three-dimensional space, J. Aust. Math. Soc., Ser. B, 39(3) (1998), pp. 355–385.
- 22.
A. Sommariva and M. Vianello, Numerical cubature on scattered data by radial basis functions, Computing, 76 (2006), pp. 295–310.
- 23.
A. Sommariva and M. Vianello, Meshless cubature by Green’s formula, Appl. Math. Comput., 183 (2006), pp. 1098–1107.
- 24.
A. Sommariva and M. Vianello, Polygauss: Matlab code for Gauss-like cubature over polygons, software downloadable from: www.math.unipd.it/∼marcov/software.html.
- 25.
A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971.
Author information
Affiliations
Corresponding author
Additional information
AMS subject classification (2000)
65F20
Rights and permissions
About this article
Cite this article
Sommariva, A., Vianello, M. Product Gauss cubature over polygons based on Green’s integration formula . Bit Numer Math 47, 441–453 (2007). https://doi.org/10.1007/s10543-007-0131-2
Received:
Accepted:
Published:
Issue Date:
Key words
- Gauss-like cubature
- polygons
- Green’s formula