BIT Numerical Mathematics

, Volume 47, Issue 1, pp 157–187 | Cite as

Local error estimates for moderately smooth problems: Part I – ODEs and DAEs

  • Thorsten Sickenberger
  • Ewa Weinmüller
  • Renate Winkler


The paper consists of two parts. In the first part, we propose a procedure to estimate local errors of low order methods applied to solve initial value problems in ordinary differential equations (ODEs) and index 1 differential-algebraic equations (DAEs). Based on the idea of defect correction we develop local error estimates for the case when the problem data is only moderately smooth. Numerical experiments illustrate the performance of the mesh adaptation based on the error estimation developed in this paper. In the second part of the paper, we will consider the estimation of local errors in context of stochastic differential equations with small noise.

Key words

local error estimation step-size control adaptive methods initial value problems differential-algebraic equations defect correction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1988.MATHGoogle Scholar
  2. 2.
    U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.MATHGoogle Scholar
  3. 3.
    W. Auzinger, R. Frank, and F. Macsek, Asymptotic error expansions for stiff equations: the implicit Euler scheme, SIAM J. Numer. Anal., 27 (1990), pp. 67–104.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    W. Auzinger, O. Koch, and E. Weinmüller, Efficient collocation schemes for singular boundary value problems, Numer. Algorithms, 31 (2002), pp. 5–25.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. Auzinger, O. Koch, and E. Weinmüller, New variants of defect correction for boundary value problems in ordinary differential equations, in Current Trends in Scientific Computing, Z. Chen, R. Glowinski, K. Li, eds, Publ. AMS, Contemp. Math., 329 (2003), pp. 43–50.Google Scholar
  6. 6.
    W. Auzinger, O. Koch, W. Kreuzer, H. Hofstätter, and E. Weinmüller, Superconvergent defect correction algorithms, WSEAS Trans. Syst. 4, 3 (2004), pp. 1378–1383.Google Scholar
  7. 7.
    W. Auzinger, W. Kreuzer, H. Hofstätter, and E. Weinmüller, Modified defect correction algorithms for ODEs. Part I: general theory, Numer. Algorithms 2, 36 (2004), pp. 135–156.MATHCrossRefGoogle Scholar
  8. 8.
    K. Brenan, S. Campbell and L. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, New York, 1989.MATHGoogle Scholar
  9. 9.
    R. Frank, Schätzungen des globalen Diskretisierungsfehlers bei Runge–Kutta-Methoden, Int. Ser. Numer. Math., 27 (1975), pp. 45–70.Google Scholar
  10. 10.
    R. Frank, J. Hertling, and C. Überhuber, Iterated defect correction based on estimates of the local discretization error, Tech. report No. 18, Department for Numerical Analysis, Vienna University of Technology, Austria, 1976.Google Scholar
  11. 11.
    R. Frank, J. Hertling, and C. Überhuber, An extension of the applicabilty of iterated defect correction, Math. Comput., 31 (1977), pp. 907–915.MATHCrossRefGoogle Scholar
  12. 12.
    R. Frank and C. Überhuber, Iterated defect correction for differential equations, Part I: theoretical results, Computing, 20 (1978), pp. 207–228.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Griepentrog and R. März, Differential-Algebraic Equations and Their Numerical Treatment, Teubner-Texte Math., vol. 88, Teubner, Leipzig, 1986.MATHGoogle Scholar
  14. 14.
    K. Gustafsson, M. Lundh, and G. Söderlind, A PI stepsize control for the numerical solution of ordinary differential equations, BIT, 28 (1988), pp. 270–287.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    E. Hairer, C. Lubich, and M. Roche, The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods, Springer, Berlin, 1989.MATHGoogle Scholar
  16. 16.
    E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I, 2nd rev. edn., Springer, Berlin, Heidelberg, New York, 2000.Google Scholar
  17. 17.
    E. Hairer and G. Wanner, Solving Ordinary Differential Equations I, Stiff and Differential-Algebraic Problems, 2nd edn., Springer, Berlin, 1996.Google Scholar
  18. 18.
    I. Higueras and R. März, Differential algebraic equations with properly stated leading terms, Comput. Math. Appl., 48 (2004), pp. 215–235.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Hofstätter and O. Koch, Defect correction for geometric integrators, in Proceedings of APLIMAT 2004, pp. 465–470.Google Scholar
  20. 20.
    R. März, Numerical methods for differential-algebraic equations, Acta Numer., 1 (1992), pp. 141–198.CrossRefGoogle Scholar
  21. 21.
    R. März, EXTRA-ordinary differential equations: Attempts to an analysis of differential-algebraic systems, Prog. Math., 168 (1998), pp. 313–334.Google Scholar
  22. 22.
    L. Petzold, Numerical solution of differential-algebraic equations, in Theory and Numerics of Ordinary and Partial Differential Equations, Oxford Univ. Press, New York, pp. 123–142, 1995.Google Scholar
  23. 23.
    W. Römisch and R. Winkler, Stepsize control for mean-square numerical methods for stochastic differential equations with small noise, SIAM J. Sci. Comput., 28 (2006), pp. 604–625.MATHMathSciNetGoogle Scholar
  24. 24.
    K. H. Schild, Gaussian collocation via defect correction, Numer. Math., 58 (1990), pp. 369–386.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman and Hall, London, 1994.MATHGoogle Scholar
  26. 26.
    T. Sickenberger, E. Weinmüller, and R. Winkler, Local error estimates for moderately smooth ODEs and DAEs, Preprint 06-1, Institut für Mathematik, Humboldt-Universität zu Berlin (2006).Google Scholar
  27. 27.
    J. Sieber, Local error control for general index-1 and index-2 differential algebraic equations, Preprint 97-21, Institut für Mathematik, Humboldt-Universität zu Berlin (1997).Google Scholar
  28. 28.
    G. Söderlind, Digital filters in adaptive time-stepping, ACM Trans. Math. Softw., 29 (2003), pp. 1–26.MATHCrossRefGoogle Scholar
  29. 29.
    G. Söderlind, Time-step algorithms: adaptivity, control and signal processing, Appl. Numer. Math., 56 (2006), pp. 488–502.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations, Springer, Berlin, Heidelberg, New York, 1973.MATHGoogle Scholar
  31. 31.
    H. J. Stetter, The defect correction principle and discretization methods, Numer. Math., 29 (1978), pp. 425–443.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    A. Verhoeven, T. G. J. Beelen, M. L. J. Hautus, and E. J. W. ter Maten, Digital linear control theory applied to automatic stepsize control in electrical circuit simulation, in Progress in Industrial Mathematics at ECMI 2004, A. Di Bucchianico, R. M. M. Matheij, and M. A. Peletier, eds., Springer, Berlin (2006), pp. 198–203.Google Scholar
  33. 33.
    P. E. Zadunaisky, On the estimation of errors propagated in the numerical integration of ODEs, Numer. Math., 27 (1976), pp. 21–39.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Q. Zheng, Ein Algorithmus zur Berechnung Nichtlinearer Schwingungen bei DAEs, Hamburger Beiträge zur Angewandten Mathematik, 1988.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Thorsten Sickenberger
    • 1
  • Ewa Weinmüller
    • 2
  • Renate Winkler
    • 1
  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institut für Analysis und Scientific ComputingTechnische Universität WienWienAustria

Personalised recommendations