Advertisement

BIT Numerical Mathematics

, Volume 46, Issue 4, pp 759–771 | Cite as

An Arnoldi-type algorithm for computing page rank

  • G. H. Golub
  • C. GreifEmail author
Article

Abstract

We consider the problem of computing PageRank. The matrix involved is large and cannot be factored, and hence techniques based on matrix-vector products must be applied. A variant of the restarted refined Arnoldi method is proposed, which does not involve Ritz value computations. Numerical examples illustrate the performance and convergence behavior of the algorithm.

Key words

PageRank, power method, Arnoldi method, refined Arnoldi, singular value decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.zbMATHMathSciNetGoogle Scholar
  2. 2.
    A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.Google Scholar
  3. 3.
    M. Bianchini, M. Gori, and F. Scarselli, Inside PageRank, ACM Trans. Internet Technol., 5 (2005), pp. 92–128.CrossRefGoogle Scholar
  4. 4.
    P. Boldi, M. Santini, and S. Vigna, PageRank as a function of the damping factor, in Proceedings of the Forteenth International World Wide Web Conference, Chiba, Japan, pp. 557–566, ACM Press, New York, 2005.Google Scholar
  5. 5.
    J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.Google Scholar
  6. 6.
    L. Eldén, A note on the eigenvalues of the Google matrix, Report LiTH-MAT-R-04-01, Linköping University, 2003.Google Scholar
  7. 7.
    R. E. Funderlic and C. D. Meyer, Sensitivity of the stationary distribution vector for an ergodic Markov chain, Linear Algebra Appl., 76 (1986), pp. 1–17.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Gleich, L. Zhukov, and P. Berkhin, Fast parallel PageRank: a linear system approach, Yahoo! Research Technical Report YRL-2004-038, available via http://research.yahoo.com/publication/YRL-2004-038.pdf, 2004.Google Scholar
  9. 9.
    G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edn., Johns Hopkins University Press, Baltimore, MD, 1996.Google Scholar
  10. 10.
    G. H. Golub and C. D. Meyer, Using the QR factorization and group inverse to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains, SIAM J. Algebra Discr., 17 (1986), pp. 273–281.MathSciNetGoogle Scholar
  11. 11.
    T. H. Haveliwala and S. D. Kamvar, The second eigenvalue of the Google matrix, Technical report 2003-20, Stanford University, available via http://dbpubs.stanford.edu:8090/pub/2003-20, 2003.Google Scholar
  12. 12.
    R. Horn and S. Serra-Capizzano, Canonical forms for certain rank one perturbations and an application to the Google PageRanking problem, Internet Math., to appear.Google Scholar
  13. 13.
    I. C. F. Ipsen and S. Kirkland, Convergence analysis of an updating algorithm by Langville and Meyer, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 952–967.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    I. C. F. Ipsen and R. S. Wills, Mathematical properties and analysis of google’s PageRank, Bol. Soc. Esp. Mat. Apl., 34 (2006) pp. 191–196.Google Scholar
  15. 15.
    Z. Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997), pp. 1–23.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Z. Jia and G. W. Stewart, An analysis of the Rayleigh–Ritz method for approximating eigenspaces, Math. Comp., 70 (2001), pp. 637–647.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. D. Kamvar and T. H. Haveliwala, The condition number of the PageRank problem, Technical report 2003-36, Stanford University, available via http://dbpubs.stanford.edu:8090/pub/2003-36, 2003.Google Scholar
  18. 18.
    S. D. Kamvar, T. H. Haveliwala, and G. H. Golub, Adaptive methods for the computation of PageRank, Linear Algebra Appl., 386 (2004), pp. 51–65.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, Extrapolation methods for accelerating PageRank computations, in Proceedings of the 12th International Conference on World Wide Web, Budapest, Hungary, 2003, available also as Stanford Technical Report SCCM-02-15, ACM Press, New York, 2003.Google Scholar
  20. 20.
    A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet Math., 1 (2005), pp. 335–380.MathSciNetGoogle Scholar
  21. 21.
    A. N. Langville and C. D. Meyer, A survey of eigenvector methods for Web information retrieval, SIAM Rev., 47 (2005), pp. 135–161.zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    C. D. Meyer, The character of a finite Markov chain, in Linear Algebra, Markov Chains, and Queueing Models, IMA Vol. Math. Appl., C. D. Meyer and R. J. Plemmons, eds., pp. 47–58, vol. 48, Springer, Berlin, 1993.Google Scholar
  23. 23.
    C. D. Meyer and G. W. Stewart, Derivatives and perturbations of eigenvectors, SIAM J. Numer. Anal., 25 (1988), pp. 679–691.zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Y. Ng, A. X. Zheng, and M. I. Jordan, Link analysis, eigenvectors and stability, in Seventeenth International Joint Conference on Artificial Intelligence, pp. 903–910, Morgan Kaufmann, Seattle, WA, 2001.Google Scholar
  25. 25.
    L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation ranking: bringing order to the web, Technical report 1999-66, Stanford University, Stanford Digital Libraries, available via http://dbpubs.stanford.edu:8090/pub/1999-66, 1999.Google Scholar
  26. 26.
    Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., SIAM, Philadelphia, PA, 2003.Google Scholar
  27. 27.
    S. Serra-Capizzano, Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 305–312.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ, 1994.Google Scholar
  29. 29.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.Google Scholar
  30. 30.
    D. Zhou, J. Huang, and B. Schölkopf, Learning from labeled and unlabeled data on a directed graph, in Proceedings of the 22nd International Conference on Machine Learning, Bonn, 2005, ACM Press, New York, 2005.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.SCCM Program, Gates 2BStanford UniversityStanfordUSA
  2. 2.Department of Computer ScienceThe University of British ColumbiaVancouverCanada

Personalised recommendations