BIT Numerical Mathematics

, Volume 46, Issue 3, pp 653–670 | Cite as

Talbot quadratures and rational approximations

Article

Abstract

Many computational problems can be solved with the aid of contour integrals containing ez in the integrand: examples include inverse Laplace transforms, special functions, functions of matrices and operators, parabolic PDEs, and reaction-diffusion equations. One approach to the numerical quadrature of such integrals is to apply the trapezoid rule on a Hankel contour defined by a suitable change of variables. Optimal parameters for three classes of such contours have recently been derived: (a) parabolas, (b) hyperbolas, and (c) cotangent contours, following Talbot in 1979. The convergence rates for these optimized quadrature formulas are very fast: roughly O(3-N), where N is the number of sample points or function evaluations. On the other hand, convergence at a rate apparently about twice as fast, O(9.28903-N), can be achieved by using a different approach: best supremum-norm rational approximants to ez for z∈(–∞,0], following Cody, Meinardus and Varga in 1969. (All these rates are doubled in the case of self-adjoint operators or real integrands.) It is shown that the quadrature formulas can be interpreted as rational approximations and the rational approximations as quadrature formulas, and the strengths and weaknesses of the different approaches are discussed in the light of these connections. A MATLAB function is provided for computing Cody–Meinardus–Varga approximants by the method of Carathéodory–Fejér approximation.

Key words

rational approximation Carathéodory–Fejér approximation quadrature Hankel contour inverse Laplace transform special functions trapezoid rule Talbot contour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Aptekarev, Sharp constants for rational approximation of analytic functions, Sb. Math., 193 (2002), pp. 1–72.CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    D. Calvetti, E. Gallopoulos, and L. Reichel, Incomplete partial fractions for parallel evaluation of rational matrix functions, J. Comput. Appl. Math., 59 (1995), pp. 349–380.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    A. J. Carpenter, A. Ruttan, and R. S. Varga, Extended computations on the ‘1/9’ conjecture in rational approximation theory, in Rational Approximation and Interpolation, P. R. Graves-Morris, E. B. Saff, and R. S. Varga, eds., Lect. Notes Math., vol. 1105, pp. 383–411, Springer, Berlin, 1984.Google Scholar
  4. 4.
    J. C. Cavendish, W. E. Culham, and R. S. Varga, A comparison of Crank–Nicolson and Chebyshev rational methods for numerically solving linear parabolic equations, J. Comput. Phys., 10 (1972), pp. 354–368.CrossRefMathSciNetGoogle Scholar
  5. 5.
    W. J. Cody, G. Meinardus, and R. S. Varga, Chebyshev rational approximations to e -x in [0,+∞) and applications to heat-conduction problems, J. Approximation Theory, 2 (1969), pp. 50–65.Google Scholar
  6. 6.
    E. Gallopoulos, A partial fraction decomposition approach to improved efficiency of some parabolic solvers, Technical report 874, Ctr. for Supercomputing Res. Dev., University of Illinois at Urbana-Champaign, May 1989.Google Scholar
  7. 7.
    E. Gallopoulos and Y. Saad, On the parallel solution of parabolic equations, Proc. 1989 ACM Internat. Conf. on Supercomputing, pp. 17–28, Heraklion, Greece, 1989.Google Scholar
  8. 8.
    E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1236–1264.CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent parallel discretization methods for the first order evolution equations, Comput. Meth. Appl. Math., 1 (2001), pp. 333–355.MathSciNetMATHGoogle Scholar
  10. 10.
    I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer. Anal., 43 (2005), pp. 2144–2171.CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    A. Gil, J. Segura, and N. M. Temme, Computing special functions by using quadrature rules, Numer. Algorithms, 33 (2003), pp. 265–275.CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Mat. Sb., 134 (1987), pp. 306–352 (English transl. in Math. USSR-Sb. 62 (1989)).Google Scholar
  13. 13.
    G. H. Halphen, Traité des fonctions elliptiques et de leurs applications, I, Théorie des fonctions elliptiques et de leurs développement en séries, Gauthier-Villars, Paris, 1886 (http://moa.cit.cornell.edu/).Google Scholar
  14. 14.
    A.-K. Kassam, Solving reaction-diffusion equations ten times faster, Numer. Anal. Rep. NA 03/16, Oxford U. Computing Lab., Oxford, 2003.Google Scholar
  15. 15.
    A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDE, SIAM J. Sci. Comput., 26 (2005), pp. 1214–1233.CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    J. D. Lawson and D. A. Swayne, High-order near best uniform approximations to the solution of heat conduction problems, Information Processing 80, pp. 741–746, North-Holland, Amsterdam, 1980.Google Scholar
  17. 17.
    M. López-Fernández, C. Lubich, C. Palencia, and A. Schädle, Fast Runge–Kutta approximation of inhomogeneous parabolic equations, Numer. Math., 102 (2005), pp. 277–291.CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    M. López-Fernández and C. Palencia, On the numerical inversion of the Laplace transform in certain holomorphic mappings, Appl. Numer. Math., 51 (2004), pp. 289–303.CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    M. López-Fernández, C. Palencia, and A. Schädle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal., 44 (2006), pp. 1332–1350.CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Y. Y. Lu, Exponentials of symmetric matrices through tridiagonal reductions, Linear Algebra Appl., 279 (1998), pp. 317–324.CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    C. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput., 24 (2002), pp. 161–182.CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Y. L. Luke, The Special Functions and Their Approximations, vol. 1–2, Academic Press, New York, 1969.Google Scholar
  23. 23.
    Y. L. Luke, Error estimation in numerical inversion of Laplace transforms using Padé approximation, J. Franklin Inst., 305 (1978), pp. 259–273.CrossRefGoogle Scholar
  24. 24.
    A. P. Magnus, Asymptotics and super asymptotics of best rational approximation error norms for the exponential function (the ‘1/9’ problem) by the Carathéodory–Fejér method, in Nonlinear Methods and Rational Approximation, II, A. Cuyt et al., eds., pp. 173–185, Kluwer, Dordrecht, 1994.Google Scholar
  25. 25.
    W. McLean and V. Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal., 24 (2004), pp. 439–463.CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer, Berlin, 1967.Google Scholar
  27. 27.
    C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49.CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    R. Piessens, On a numerical method for the calculation of transient responses, J. Franklin Inst., 292 (1971), pp. 57–64.CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    R. Piessens, Gaussian quadrature formulas for the numerical integration of Bromwich’s integral and the inversion of the Laplace transform, J. Eng. Math., 5 (1971), pp. 1–9.CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    V. M. Rjabov, Application of Padé approximations to Laplace transformation inversion, Vestn. Leningrad. Univ. Math., 2 (1970), p. 119 (Russian).Google Scholar
  31. 31.
    A. J. Rodrigues, Properties of constants for a quadrature formula to evaluate Bromwich’s integral, J. Inst. Math. Appl., 18 (1976), pp. 49–56.CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.Google Scholar
  33. 33.
    H. E. Salzer, Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms, Math. Comput., 9 (1955), p. 164–177.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    A. Schädle, M. López-Fernández, and C. Lubich, Fast and oblivious convolution quadrature, SIAM J. Sci. Comput., 28 (2006), pp. 421–438.CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    T. Schmelzer and L. N. Trefethen, Computing the gamma function using contour integrals and rational approximations, SIAM J. Numer. Anal., submitted.Google Scholar
  36. 36.
    A. Schönhage, Zur rationalen Approximierbarkeit von e -x über [0,∞), J. Approximation Theory, 7 (1973), pp. 395–398.Google Scholar
  37. 37.
    D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature, Math. Comput., 69 (2000), pp. 177–195.MATHGoogle Scholar
  38. 38.
    D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23 (2003), pp. 269–299.CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw., 24 (1998), pp. 130–156.CrossRefMATHGoogle Scholar
  40. 40.
    H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.Google Scholar
  41. 41.
    A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23 (1979), pp. 97–120.CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    N. M. Temme, Special Functions, Wiley, New York, 1996.Google Scholar
  43. 43.
    L. N. Trefethen, Chebyshev approximation on the unit disk, in Computational Aspects of Complex Analysis, H. Werner et al., eds., pp. 309–323, D. Reidel Publishing, Dordrecht, 1983.Google Scholar
  44. 44.
    L. N. Trefethen, Matlab programs for CF approximation, in Approximation Theory V, pp. 599–602, Academic Press, Boston, 1986.Google Scholar
  45. 45.
    L. N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., submitted.Google Scholar
  46. 46.
    L. N. Trefethen and M. H. Gutknecht, The Carathéodory–Fejér method for real rational approximation, SIAM J. Numer. Anal., 20 (1983), pp. 420–436.CrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    L. N. Trefethen and J. A. C. Weideman, The fast trapezoid rule in scientific computing, manuscript in preparation.Google Scholar
  48. 48.
    R. S. Varga, On higher order stable implicit methods for solving parabolic partial differential equations, J. Math. Phys., 40 (1961), pp. 220–231.MATHGoogle Scholar
  49. 49.
    J. Vlach, Numerical method for transient responses of linear networks with lumped, distributed or mixed parameters, J. Franklin Inst., 288 (1969), pp. 99–113.CrossRefGoogle Scholar
  50. 50.
    J. A. C. Weideman, Optimizing Talbot’s contours for the inversion of the Laplace transform, SIAM J. Numer. Anal., to appear.Google Scholar
  51. 51.
    J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comput., to appear.Google Scholar
  52. 52.
    V. Zakian, Properties of IMN and JMN approximants and applications to numerical inversion of Laplace transforms and initial value problems, J. Math. Anal. Appl., 50 (1975), pp. 191–222.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • L. N. Trefethen
    • 1
  • J. A. C. Weideman
    • 2
  • T. Schmelzer
    • 1
  1. 1.Oxford University Computing Laboratory, Wolfson Bldg.OxfordUK
  2. 2.Department of Applied MathematicsUniversity of StellenboschMatielandSouth Africa

Personalised recommendations