BIT Numerical Mathematics

, Volume 46, Issue 3, pp 515–524 | Cite as

Symmetric linear multistep methods

  • Ernst HairerEmail author


Some important early contributions of Germund Dahlquist are reviewed and their impact to recent developments in the numerical solution of ordinary differential equations is shown. This work is an elaboration of a talk presented in the Dahlquist session at the SciCADE05 conference in Nagoya.

Key words

linear multistep method symmetry growth parameter weak instability backward error analysis parasitic solution long-term stability  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Dahlquist, Fehlerabschätzungen bei Differenzenmethoden zur numerischen Integration gewöhnlicher Differentialgleichungen, Z. Angew. Math. Mech., 31 (1951), pp. 239–240.zbMATHCrossRefGoogle Scholar
  2. 2.
    G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand., 4 (1956), pp. 33–53.zbMATHMathSciNetGoogle Scholar
  3. 3.
    G. Dahlquist, Stability and error bounds in the numerical integration of ordinary differential equations, Trans. Royal Inst. Technol., vol. 130, Stockholm, Sweden, 1959.Google Scholar
  4. 4.
    G. Dahlquist, 33 years of numerical instability, part I, BIT, 25 (1985), pp. 188–204.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Faou, E. Hairer, and T.-L Pham, Energy conservation with non-symplectic methods: examples and counter-examples, BIT, 44 (2004), pp. 699–709.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    E. Hairer, Backward error analysis for multistep methods, Numer. Math., 84 (1999), pp. 199–232.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Hairer and C. Lubich, Symmetric multistep methods over long times, Numer. Math., 97 (2004), pp. 699–723.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn., Springer Series in Computational Mathematics 31, Springer, Berlin, 2006.Google Scholar
  9. 9.
    P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley & Sons Inc., New York, 1962.Google Scholar
  10. 10.
    J. D. Lambert and I. A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl., 18 (1976), pp. 189–202.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G. D. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, Astron. J., 100 (1990), pp. 1694–1700.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Univ. de GenèveGenève 24Switzerland

Personalised recommendations