BIT Numerical Mathematics

, Volume 45, Issue 2, pp 415–427 | Cite as

On Underestimating in Interval Computations

Article

Abstract

A problem of underestimating in interval arithmetic is considered. Assuming some regularity of the dependency between variables, the results of the interval arithmetic operations are underestimated. The proposed underestimates are illustrated using examples. Application possibilities of the proposed underestimates in random interval arithmetic are discussed.

Key words

interval arithmetic function range underestimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alt and J. L. Lamotte, Experiments on the evaluation of functional ranges using random interval arithmetic, Mathematics and Computers in Simulation, 56 (2001), pp. 17–34.Google Scholar
  2. 2.
    E. Hansen and G. W. Walster, Global Optimization Using Interval Analysis, Marcel Dekker, New York, 2003.Google Scholar
  3. 3.
    E. Kaucher, Über Eigenschaften und Anwendungsmöglichkeiten der erweiterten Intervallrechnung des hyperbolische Fastkörpers überRn, Computing, Suppl. 1 (1977), pp. 81–94.Google Scholar
  4. 4.
    V. Kreinovich, V. M. Nesterov, and N. A. Zheludeva, Interval methods that are guaranteed to underestimate (and the resulting new justification of Kaucher arithmetic), Reliable Computing, 2 (1996), pp. 119–124.Google Scholar
  5. 5.
    M. Lerch, G. Tischler, J. W. von Gudenberg, W. Hofschuster, and W. Krämer, The interval library filib++ 2.0 – design, features and sample programs, Preprint 2001/4, Universität Wuppertal, 2001.Google Scholar
  6. 6.
    R. E. Moore, Interval Analysis, Prentice-Hall, 1966.Google Scholar
  7. 7.
    R. E. Moore, On computing the range of values of a rational function of n variables over a bounded region, Computing, 16 (1976), pp. 1–15.Google Scholar
  8. 8.
    S. P. Shary, A new technique in systems analysis under interval uncertainty and ambiguity, Reliable Computing, 8 (2002), pp. 321–418.Google Scholar
  9. 9.
    S. Skelboe, Computation of a rational interval functions, BIT, 14 (1974), pp. 87–95.Google Scholar
  10. 10.
    A. Törn and A. Žilinskas, Global Optimization, Lecture Notes in Computer Science, 350 (1989), Springer-Verlag, Berlin, pp. 1–252.Google Scholar
  11. 11.
    A. Žilinskas and J. Žilinskas, On efficiency of tightening bounds in interval global optimization, in PARA’04 State-of-the-Art in Scientific Computing, Lyngby, Denmark, June 20–23, 2004, Proceedings, J. Dongarra, K. Madsen, and J. Wasniewski (eds), Lecture Notes in Computer Science, Springer, 2005, accepted.Google Scholar
  12. 12.
    J. Žilinskas and I. D. L. Bogle, Evaluation ranges of functions using balanced random interval arithmetic, Informatica, 14 (2003), pp. 403–416.Google Scholar
  13. 13.
    J. Žilinskas and I. D. L. Bogle, Balanced random interval arithmetic, Computers and Chemical Engineering, 28 (2004), pp. 839–851.Google Scholar
  14. 14.
    J. Žilinskas, Comparison of packages for interval arithmetic, Informatica, 16 (2005), pp. 145–154.Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsVilniusLithuania

Personalised recommendations