Advertisement

BIT Numerical Mathematics

, Volume 45, Issue 4, pp 653–677 | Cite as

Monotonicity Preserving Approximation of Multivariate Scattered Data

  • G. Beliakov
Article

Abstract

This paper describes a new method of monotone interpolation and smoothing of multivariate scattered data. It is based on the assumption that the function to be approximated is Lipschitz continuous. The method provides the optimal approximation in the worst case scenario and tight error bounds. Smoothing of noisy data subject to monotonicity constraints is converted into a quadratic programming problem. Estimation of the unknown Lipschitz constant from the data by sample splitting and cross-validation is described. Extension of the method for locally Lipschitz functions is presented.

Key words

monotone approximation isotone approximation scattered data central algorithm optimal approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Alfeld, Scattered data interpolation in three or more variables, in Mathematical Methods in Computer Aided Geometric Design, L. Schumaker and T. Lyche, eds., pp. 1–34, Academic Press, New York, 1989.Google Scholar
  2. 2.
    L.-E. Andersson and T. Elfving, Interpolation and approximation by monotone cubic splines, J. Approx. Theory, 66 (1991), pp. 302–333.Google Scholar
  3. 3.
    F. Aurenhammer, Voronoi diagrams – a survey of a fundamental data structure, ACM Comput. Surv., 23 (1991), pp. 345–405.Google Scholar
  4. 4.
    A. Bagirov, Derivative-free methods for unconstrained nonsmooth optimization and its numerical analysis, J. Investigacao Operacional, 19 (1999), pp. 75–93.Google Scholar
  5. 5.
    A. Bagirov, A method for minimization of quasidifferentiable functions, Optim. Methods Softw., 17 (2002), pp. 31–60.Google Scholar
  6. 6.
    R. Beatson and Z. Ziegler, Monotonicity preserving surface interpolation, SIAM J. Numer. Anal., 22 (1985), pp. 401–411.Google Scholar
  7. 7.
    G. Beliakov, Shape preserving approximation using least squares splines, Approximation Theory Appl., 16 (2000), pp. 80–98.Google Scholar
  8. 8.
    G. Beliakov, Monotone approximation of aggregation operators using least squares splines, Int. J. Uncertainty, Fuzziness and Knowl.-Based Syst., 10 (2002), pp. 659–676.Google Scholar
  9. 9.
    J. Borwein, J. Vanderwerff and X. Wang, Local Lipschitz-constant functions and maximal subdifferentials, Set-Valued Anal., 11 (2003), pp. 37–67.Google Scholar
  10. 10.
    T. Calvo, A. Kolesarova, M. Komornikova and R. Mesiar, Aggregation operators: properties, classes and construction methods, in Aggregation Operators. New Trends and Applications, T. Calvo, G. Mayor and R. Mesiar, eds., pp. 3–104, Physica, Heidelberg, New York, 2002.Google Scholar
  11. 11.
    R. Carlson and F. Fritsch, Monotone piecewise bicubic interpolation, SIAM J. Numer. Anal., 22 (1985), pp. 386–400.Google Scholar
  12. 12.
    J. Carnicer and M. Floater, Piecewise linear interpolants to Lagrange and Hermite convex scattered data, Numer. Algorithms, 13 (1996), pp. 345–364.Google Scholar
  13. 13.
    P. Costantini and F. Fontanella, Shape-preserving bivariate interpolation, SIAM J. Numer. Anal., 22 (1985), pp. 488–506.Google Scholar
  14. 14.
    P. Costantini and C. Manni, A bicubic shape-preserving blending scheme, Comput. Aided Geom. Des., 13 (1996), pp. 307–331.Google Scholar
  15. 15.
    P. Costantini and C. Manni, Comonotone parametric C1 interpolation of nongridded data, J. Comput. Appl. Math., 75 (1996), pp. 147–169.Google Scholar
  16. 16.
    P. Costantini and C. Manni, Monotonicity-preserving interpolation of nongridded data, Comput. Aided Geom. Des., 13 (1996), pp. 467–497.Google Scholar
  17. 17.
    P. Costantini and C. Manni, On a class of polynomial triangular macro-elements, J. Comput. Appl. Math., 73 (1996), pp. 45–64.Google Scholar
  18. 18.
    P. Costantini and C. Manni, A local shape-preserving interpolation scheme for scattered data, Comput. Aided Geom. Des., 16 (1999), pp. 385–405.Google Scholar
  19. 19.
    C. De Boor, Computational aspects of optimal recovery, in Optimal Estimation in Approximation Theory, C. Micchelli and T. Rivlin, eds., pp. 69–91, Plenum Press, New York, 1977.Google Scholar
  20. 20.
    P. Gaffney and M. Powell, Optimal interpolation, in Numerical Analysis, G. Watson, ed., Lect. Notes Math., vol. 506, pp. 90–99, Springer, Heidelberg, 1976.Google Scholar
  21. 21.
    E. M. Gertz and S. J. Wright, Object-oriented software for quadratic programming, ACM Trans. Math. Softw., 29 (2003), pp. 58–81.Google Scholar
  22. 22.
    M. Golomb and H. Weinberger, Optimal approximation and error bounds, in On Numerical Approximation, R. E. Langer, ed., pp. 117–190, The Univ. of Wisconsin Press, Madison, 1959.Google Scholar
  23. 23.
    L. Gyorfi, M. Kohler, A. Krzyzak and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer, New York, 2002.Google Scholar
  24. 24.
    P. Hall and L. Huang, Nonparametric kernel regression subject to monotonicity constraints, Ann. Stat., 29 (2001), pp. 624–647.Google Scholar
  25. 25.
    L. Han and L. Schumaker, Fitting monotone surfaces to scattered data using C1 piecewise cubics, SIAM J. Numer. Anal., 34 (1997), pp. 569–585.Google Scholar
  26. 26.
    J. Hutchison, A. Lo and T. Poggio, A nonparametric approach to pricing and hedging derivative securities via learning networks, J. Finance, 49 (1994), pp. 851–889.Google Scholar
  27. 27.
    C. Micchelli and T. Rivlin, A survey of optimal recovery, in Optimal Estimation in Approximation, C. Micchelli and T. Rivlin, eds., pp. 1–54, Plenum Press, New York, 1977.Google Scholar
  28. 28.
    C. Micchelli and T. Rivlin, Lectures on optimal recovery, in Numerical Analysis, P. Turner, ed., Lect. Notes Math., vol. 1129, pp. 12–93, Springer, Heidelberg, 1984.Google Scholar
  29. 29.
    C. Micchelli, T. Rivlin and S. Winograd, The optimal recovery of smooth functions, Numer. Math., 26 (1976), pp. 191–200.Google Scholar
  30. 30.
    B. Mulansky and M. Neamtu, Interpolation and approximation from convex sets, J. Approx. Theory, 92 (1998), pp. 82–100.Google Scholar
  31. 31.
    A. Okabe, B. Boots, K. Sugihara and S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn., John Wiley, Chichester, 2000.Google Scholar
  32. 32.
    J. Ramsay, Monotone regression splines in action, Stat. Sci., 3 (1988), pp. 425–461.Google Scholar
  33. 33.
    R. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.Google Scholar
  34. 34.
    L. Schumaker, On shape preserving quadratic interpolation, SIAM J. Numer. Anal., 20 (1983), pp. 854–864.Google Scholar
  35. 35.
    A. Sukharev, Minimax Models in the Theory of Numerical Methods, Theory and Decision Library Series B, vol. 21, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  36. 36.
    J. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms, Academic Press, New York, 1980.Google Scholar
  37. 37.
    F. Utreras and M. Varas, Monotone interpolation of scattered data inrs, Constr. Approx., 7 (1991), pp. 49–68.Google Scholar
  38. 38.
    K. Willemans and P. Dierckx, Smoothing scattered data with a monotone Powell-Sabin spline surface, Numer. Algorithms, 12 (1996), pp. 215–232.Google Scholar
  39. 39.
    H.-J. Zimmermann, Fuzzy Set Theory – and its Applications, Kluwer, Boston, 1996.Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Information TechnologyDeakin UniversityBurwoodAustralia

Personalised recommendations