Biochemistry (Moscow)

, Volume 70, Issue 10, pp 1104–1110 | Cite as

Molecular Characteristics of OmpF-Like Porins from Pathogenic Yersinia

  • K. V. Guzev
  • M. P. Isaeva
  • O. D. Novikova
  • T. F. Solov'eva
  • V. A. Rasskazov
Article

Abstract

Nonspecific pore-forming proteins (porins) are the major proteins of the outer membrane of Gram-negative bacteria responsible for diffusion of low-molecular-weight compounds. Nucleotide sequences of the OmpF-like porins from the pathogenic bacteria Yersinia pseudotuberculosis (YPS) and Yersinia enterocolitica (YE) were cloned and determined. Values of molecular weights (MW) and isoelectric points (IEP) calculated for these proteins (for OmpF-YPS: MW 37.7 kD, IEP 4.45; for OmpF-YE: MW 39.5 kD, IEP 4.34) are in good agreement with experimental data. The OmpF-like Yersinia porins are highly homologous to each other (83–92%) and also to the OmpF protein from Serratia marcescens (70%); the homology to the OmpF porin from E. coli is significantly lower (52–58%). Multiple alignment of the amino acid sequences of mature OmpF proteins provided the distribution of conservative amino acid residues typical for porins. Moreover, the OmpF-like porins from Yersinia are characterized by the presence of extended regions with high and low homologies, which coincide with the transmembrane domains and “external” loops, respectively, of the topological model of the OmpF porin from E. coli. By predictive methods, the secondary structure of the OmpF-like porins from Yersinia was obtained. This structure is represented by 16 β-strands connected by short “ periplasmic” and longer “external” loops with unordered structure.

Key words

porin OmpF Yersinia pseudotuberculosis Yersinia enterocolitica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Jeanteur, D., Lakey, J. H., and Pattus, F. (1991) Mol. Microbiol., 5, 2153–2164.PubMedGoogle Scholar
  2. 2.
    Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P. (1992) Nature, 358, 727–733.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu, X., and Ferenci, T. (2001) Microbiology, 147, 2981–2989.PubMedGoogle Scholar
  4. 4.
    Nestrovich, E. M., Danelon, C., Winterhalter, M., and Bezrukov, S. M. (2002) Proc. Natl. Acad. Sci. USA, 99, 9789–9794.Google Scholar
  5. 5.
    Robinson, G. N. (1998) J. Antimicrob. Chemother., 41, 589–603.Google Scholar
  6. 6.
    Novikova, O. D., Zykova, T. A., Yadykina, G. M., Glazunov, V. P., and Solov'eva, T. F. (1985) Biol. Membr. (Moscow), 2, 714–723.Google Scholar
  7. 7.
    Portnyagina, O. Yu., Novikova, O. D., Vostrikova, O. P., and Solov'eva, T. F. (1999) Byul. Eksp. Biol. Med., 128, 437–440.Google Scholar
  8. 8.
    Gordeets, A. V., Portnyagina, O. Yu., Vostrikova, O. P., Malashenkova, V. G., Beniova, S. N., Novikova, O. D., and Solov'eva, T. F. (2000) RF Patent 2153172 on the Method for Diagnosis of Pseudotuberculosis.Google Scholar
  9. 9.
    Vostrikova, O. P., Likhatskaya, G. N., Novikova, O. D., and Solov'eva, T. F. (2001) Membr. Cell Biol., 14, 503–515.PubMedGoogle Scholar
  10. 10.
    Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C., Mungall, K. L., Baker, S., Basham, D., Bentley, S. D., Brooks, K., Cerdeno-Tarraga, A. M., Chillingworth, T., Cronin, A., Davies, R. M., Davis, P., Dougan, G., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Karlyshev, A. V., Leather, S., Moule, S., Oyston, P. C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S., and Barrell, B. G. (2001) Nature, 413, 523–527.PubMedGoogle Scholar
  11. 11.
    Sproer, C., Mendrock, U., Swiderski, J., Lang, E., and Stackebrandt, E. (1999) Int. J. Syst. Bacteriol., 49, 1433–1438.PubMedGoogle Scholar
  12. 12.
    Nurminen, M. (1985) in Enterobacterial Surface Antigen Methods for Molecular Characterization (Korhonen, T. K., ed.) Elsevier Science Publ., New York, pp. 293–300.Google Scholar
  13. 13.
    Novikova, O. D., Fedoreeva, L. I., Khomenko, V. A., Portnyagina, O. Yu., Ermak, I. M., Likhatskaya, G. N., Moroz, S. V., Solov'eva, T. F., and Ovodov, Yu. S. (1993) Bioorg. Khim., 19, 536–547.Google Scholar
  14. 14.
    Khomenko, V. A., Novikova, O. D., Fedoreeva, L. I., Likhatskaya, G. N., Borisova, M. P., Vostrikova, O. P., Vakorina, T. I., Timchenko, N. F., Solov'eva, T. F., and Ovodov, Yu. S. (1994) Biol. Membr. (Moscow), 11, 68–79.Google Scholar
  15. 15.
    Bredin, J., Saint, N., Mallea, M., Molle, G., Pages, J. M., and Simonet, V. (2002) Biochem. J., 363, 521–528.PubMedCrossRefGoogle Scholar
  16. 16.
    Hutsul, J. A., and Worobec, E. (1997) Microbiology, 143, 2797–2806.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenbusch, J. P. (1990) Experientia, 46, 167–173.PubMedGoogle Scholar
  18. 18.
    Achouak, W., Heulin, T., and Pages, J. M. (2001) FEMS Microbiol. Lett., 199, 1–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Epp, S. F., Kohler, T., and Perhere, J. C. (2001) Antimicrob. Agents Chemother., 45, 1780–1787.PubMedCrossRefGoogle Scholar
  20. 20.
    Alberty, S., Marques, G., Campruby, S., Merino, J., Tomas, S. M., Vivanco, F., and Benedy, V. J. (1993) Infect. Immun., 61, 852–860.Google Scholar
  21. 21.
    Cao, Z., and Klebba, P. E. (2002) Biochimie, 84, 399–412.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • K. V. Guzev
    • 1
  • M. P. Isaeva
    • 1
  • O. D. Novikova
    • 1
  • T. F. Solov'eva
    • 1
  • V. A. Rasskazov
    • 1
  1. 1.Pacific Institute of Bioorganic Chemistry, Far-Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations