Biochemistry (Moscow)

, Volume 70, Issue 10, pp 1086–1094 | Cite as

Computer-Aided Analysis of Spatial Structure of Some Hydrolytic Enzymes

  • V. G. Artyukhov
  • T. A. Kovaleva
  • O. M. Kozhokina
  • L. A. Bitutskaya
  • R. V. Dronov
  • O. D. Trofimova
Article

Abstract

Using the MolScript version 2.1 computer program for protein molecule modeling and X-ray structure analysis data the spatial structures of several hydrolytic enzymes have been compared. These include glucoamylase from Aspergillus awamori and Saccharomycopsis fibuligera and lipases from Rhizopus japonicus. Results on homology of amino acid sequences and topology of secondary structure elements were obtained. 3D models of these enzymes with positioning of functionally important groups in the active site cavity were built.

Key words

enzyme amino acid sequence secondary structure spatial model topology computer-aided analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Galich, I. P. (1987) Microbial Amylases [in Russian], Naukova Dumka, Kiev.Google Scholar
  2. 2.
    Zherebtsov, N. A. (1984) Amylolytic Enzymes in Food Industry [in Russian], Legkaya i Pishchevaya Promyshlennost', Moscow.Google Scholar
  3. 3.
    Kovaleva, T. A. (2000) Biofizika, 45, 439–444.PubMedGoogle Scholar
  4. 4.
    Shelamova, S. A., Kovaleva, T. A., Selemenov, V. F., Trofimova, O. D., and Bondareva, N. V. (2001) Biotekhnologiya, 5, 32–39.Google Scholar
  5. 5.
    Anderson, M. M., and McCarthy, R. E. (1972) Analyt. Biochem., 45, 271–276.Google Scholar
  6. 6.
    Kochetov, G. A. (1980) Handbook on Enzymology [in Russian], Vysshaya Shkola, Moscow.Google Scholar
  7. 7.
    Thannhauser, T. W., Konishi, Y., and Scheraga, H. A. (1984) Analyt. Biochem., 138, 181–188.PubMedGoogle Scholar
  8. 8.
    Kraulis, P. (1991) J. Appl. Crystallogr., 24, 946–950.CrossRefGoogle Scholar
  9. 9.
    Solovicova, A., Gasperik, J., and Hostinova, E. (1996) Biochem. Biophys. Res. Commun., 224, 790–795.CrossRefPubMedGoogle Scholar
  10. 10.
    Aleshin, A., Firsov, L., Harris, E., and Honzatko, R. (1993) Biochem., 32, 1618–1626.Google Scholar
  11. 11.
    Kovaleva, T. A., Kozhokina, O. M., Bityutskaya, L. A., Dronov, R. B., and Melnikov, L. Yu. (2001) IX Int. Conf. “Mathematics. Computer. Education”, Abstract Book, Moscow, p. 208.Google Scholar
  12. 12.
    Kozhokina, O. M., Dronov, R. B., and Melnikov, L. Yu. (2002) The Sixth School-Conference of Young Scientists “Biology for XXI Century”, Book of Abstracts, Pushchino, Vol. 1, pp. 178–179.Google Scholar
  13. 13.
    Kovaleva, T. A., Basharina, O. V., and Selemenev, B. F. (1991) Acid-Base and Temperature Homeostasis: Physiology, Biochemistry and Clinics [in Russian], Syktyvkar, pp. 37–42.Google Scholar
  14. 14.
    Kohno, M., Kygimiya, W., and Hashimoto, Y. (1993) J. Mol. Biol., 229, 785–786.CrossRefPubMedGoogle Scholar
  15. 15.
    Berryman, D., Mulero, J., and Hughes, L. (1998) Biochim. Biophys. Acta, 1382, 217–229.PubMedGoogle Scholar
  16. 16.
    Ruiz, B., Farres, A., and Langley, E. (2001) Lipids, 36, 283–289.PubMedGoogle Scholar
  17. 17.
    Pernas, M., Lopez, C., and Rua, M. (2001) FEBS Lett., 501, 87–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Palomo, J., Fuentes, M., and Fernandez-Lorente, G. (2003) Biomacromolecules, 4, 1–6.PubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • V. G. Artyukhov
    • 1
  • T. A. Kovaleva
    • 1
  • O. M. Kozhokina
    • 1
  • L. A. Bitutskaya
    • 1
  • R. V. Dronov
    • 1
  • O. D. Trofimova
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations