Advertisement

Biochemistry (Moscow)

, Volume 70, Issue 7, pp 761–769 | Cite as

Oxidative Processes Induced by tert-Butyl Hydroperoxide in Human Red Blood Cells: Chemiluminescence Studies

  • A. V. Domanski
  • E. A. Lapshina
  • I. B. ZavodnikEmail author
Article

Abstract

The erythrocyte is a good model for investigation of the mechanisms of cell damage induced by oxidizing agents. Oxidative damage to cell components and cellular metabolism results in impaired rheological properties of circulating red blood cells and is involved in the development of some pathologies. The aim of the present study was to elucidate further the oxidative processes induced by tert-butyl hydroperoxide (tBOOH) in erythrocytes, identify cellular targets damaged by the oxidant, as well as estimate the energy and stoichiometry of the reactions that occur. The generation of free radicals in the cell was registered using the chemiluminescence technique. The products of oxyhemoglobin (oxyHb) oxidation, changes in intracellular glutathione (GSH) pool, and accumulation of the stable products of membrane lipid peroxidation were concurrently measured. The oxidative processes induced by tBOOH in red blood cells can be described as follows: 1) rapid GSH oxidation (30–60 sec) by glutathione peroxidase; 2) formation of radicals in the reaction between tBOOH and cellular Hb, which are then immediately consumed in lipid peroxidation reactions; 3) generation of chemiluminescence by the radicals formed. Several stages of the oxidative processes can be revealed. The order of the chemiluminescence reaction (n) with respect to oxidant was estimated to be equal to 2.5 at oxidant concentrations less than 0.5 mM and equal to 1.0 at higher oxidant concentrations. The order of the reaction of membrane lipid peroxidation was found to be n = 2.2 at 0.25–0.6 mM tBOOH and n = 0.5 at higher oxidant concentrations. The apparent activation energy of membrane lipid peroxidation was 55.8 ± 6.4 kJ/mol, and that of oxyHb oxidation was 108 ± 16 kJ/mol. It is shown that the interaction of tBOOH and HOCl in erythrocytes is accompanied by changes in both the total number of radicals generated in the cell and the time corresponding to the maximal rate of radical generation.

Key words

human red blood cells oxidative stress organic hydroperoxide hypochlorous acid hemoglobin chemiluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Sies, H. (1991) in Oxidative Stress: Oxidants and Antioxidants, Academic Press, London, pp. 15–22.Google Scholar
  2. 2.
    Saran, M., and Bors, W. (1990) Radiat. Environ. Biophys., 29, 249–262.CrossRefPubMedGoogle Scholar
  3. 3.
    Chin, D., Lubin, B., and Shohet, S. B. (1982) in Free Radicals in Biology (Pryor, W. A., ed.) Vol. 5, Academic Press, New York-London, pp. 116–160.Google Scholar
  4. 4.
    Clark, M. R. (1988) Physiol. Rev., 68, 503–534.PubMedGoogle Scholar
  5. 5.
    Bartosz, G. (1990) in Blood Cell Biochemistry, Vol. 1, Erythroid Cell (Harris, J. R., ed.) Premium Press, New York, pp. 45–79.Google Scholar
  6. 6.
    Caprary, P., Bozzi, A., Malorni, W., Bottini, A., Eosi, F., Santini, M. T., and Salvati, A. M. (1995) Chem.-Biol. Interact., 94, 243–258.CrossRefPubMedGoogle Scholar
  7. 7.
    Aherne, S. A., and O’Brien, N. M. (2000) Free Rad. Biol. Med., 29, 507–514.CrossRefPubMedGoogle Scholar
  8. 8.
    Barr, D. P., Martin, M. V., Guengerich, F. P., and Mason, R. P. (1996) Chem. Res. Toxicol., 9, 318–325.CrossRefPubMedGoogle Scholar
  9. 9.
    Van der Zee, J., Barr, D. P., and Mason, R. P. (1996) Free Rad. Biol. Med., 20, 199–206.CrossRefPubMedGoogle Scholar
  10. 10.
    Halliwell, B., and Gutteridge, J. M. C. (eds.) (1999) Free Radicals in Biology and Medicine, 3rd Edn., Oxford University Press, New York.Google Scholar
  11. 11.
    Bryszewska, M., Piasecka, A., Zavodnik, L. B., Distel, L., and Schussler, H. (2003) Biochim. Biophys. Acta, 1621, 285–291.PubMedGoogle Scholar
  12. 12.
    Fraga, C., and Tappel, A. L. (1988) Biochem. J., 252, 893–896.PubMedGoogle Scholar
  13. 13.
    Mazhul, V., Shcherbin, D., Zavodnik, I., Rekawiecka, K., and Bryszewska, M. (1999) Cell. Biol. Int., 23, 345–350.CrossRefPubMedGoogle Scholar
  14. 14.
    Vladimirov, Yu. A., and Sherstnev, M. P. (1989) Chemiluminescence of Animal Cells, in Advances in Science and Technology. Ser. Biophysics [in Russian], Vol. 24, VINITI, Moscow.Google Scholar
  15. 15.
    Zavodnik, I., Ertel, D., Bryszewska, M., and Kedziora, J. (1997) Curr. Top. Biophys., 21, 62–66.Google Scholar
  16. 16.
    Stocks, J., and Dormandy, T. L. (1971) Br. J. Haematol., 20, 95–111.PubMedGoogle Scholar
  17. 17.
    Ellman, G. (1959) Arch. Biochem. Biophys., 82, 70–77.CrossRefPubMedGoogle Scholar
  18. 18.
    Akerboom, T. P. M., and Sies, H. (1981) Meth. Enzymol., 77, 373–382.PubMedGoogle Scholar
  19. 19.
    Rossi, R., Cardaioli, E., Scaloni, A., Amiconi, F., and Di Simplicio, P. (1995) Biochim. Biophys. Acta, 1243, 230–238.PubMedGoogle Scholar
  20. 20.
    Winterbourn, C. C., McGrath, B. M., and Carrel, R. W. (1976) Biochem. J., 155, 493–502.PubMedGoogle Scholar
  21. 21.
    Szebeni, J., Winterbourn, C. C., and Carrell, R. W. (1984) Biochem. J., 220, 685.PubMedGoogle Scholar
  22. 22.
    Makino, N., Bannai, S., and Sugita, Y. (1995) Biochim. Biophys. Acta, 1243, 503–508.PubMedGoogle Scholar
  23. 23.
    Rohn, T. T., Hinds, T. R., and Vincenzi, F. F. (1993) Biochim. Biophys. Acta, 1153, 67–76.PubMedGoogle Scholar
  24. 24.
    Sestili, P., Brambilla, L., and Cantoni, O. (1999) FEBS Lett., 457, 139–143.CrossRefPubMedGoogle Scholar
  25. 25.
    Van der Zee, J., Dubbelman, T. M. A. R., and van Steveninck, J. (1985) Biochim. Biophys. Acta, 818, 38–44.PubMedGoogle Scholar
  26. 26.
    Ataullakhanov, F. I., Vitvitskii, V. M., Zhabotinskii, A. M., Kiyatkin, A. B., Pichugin, A. V., and Sinauridze, E. I. (1986) Biokhimiya, 51, 1562–1570.Google Scholar
  27. 27.
    Bryszewska, M., Zavodnik, I. B., Niekurzak, A., and Szosland, K. (1995) Biochem. Mol. Biol. Int., 37, 345–354.PubMedGoogle Scholar
  28. 28.
    Zavodnik, L. B., Zavodnik, I. B., Niekurzak, A., Szosland, K., and Bryszewska, M. (1998) Biochem. Mol. Biol. Int., 44, 577–588.PubMedGoogle Scholar
  29. 29.
    Krajewska, E., Zavodnik, I., Kluska, B., Szosland, K., and Bryszewska, M. (1997) Biochem. Mol. Biol. Int., 42, 203–210.PubMedGoogle Scholar
  30. 30.
    Augustyniak, K., Zavodnik, I., Palecz, D., Szosland, K., and Bryszewska, M. (1996) Clin. Biochem., 29, 283–286.CrossRefPubMedGoogle Scholar
  31. 31.
    Yoshida, Y., Kashiba, K., and Niki, E. (1994) Biochim. Biophys. Acta, 1201, 165–172.PubMedGoogle Scholar
  32. 32.
    Rest, R. F. (1994) Meth. Enzymol., 236, 119–137.PubMedGoogle Scholar
  33. 33.
    Yesilkaya, A., and Yegin, A. (1998) Gen. Pharmac., 30, 495–498.CrossRefGoogle Scholar
  34. 34.
    Gabbianelli, R., Santroni, A. M., Concetti, A., Kantar, A., and Falcioni, G. (1996) Comp. Biochem. Physiol., 115C, 83–87.Google Scholar
  35. 35.
    Pogosyan, G. A., Dremina, E. S., Sharov, V. S., Zakaryan, A. E., Panpsyan, G. A., and Vladimirov, Yu. A. (1996) Biofizika, 41, 342–347.PubMedGoogle Scholar
  36. 36.
    Sano, M., Kawabata, H., Tomita, I., Yoshioka, H., and Hu, M. L. (1994) J. Toxicol. Environ. Health, 43, 339–350.PubMedGoogle Scholar
  37. 37.
    Osipov, A. N., Panasenko, O. M., Chekanov, A. V., and Arnhold, J. (2002) Free Rad. Res., 36, 749–754.CrossRefGoogle Scholar
  38. 38.
    Arnhold, J., Panasenko, O. M., Schiller, L., Arnold, K., Vladimirov, J. A., and Sergienko, V. I. (1996) Z. Naturforsch., 51c, 386–394.Google Scholar
  39. 39.
    Zavodnik, I. B., Lapshina, E. A., Zavodnik, L. B., Soszynski, M., Bartosz, G., and Bryszewska, M. (2002) Bioelectrochemistry, 58, 127–135.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. V. Domanski
    • 1
  • E. A. Lapshina
    • 1
  • I. B. Zavodnik
    • 1
    Email author
  1. 1.Institute of BiochemistryNational Academy of Sciences of BelarusGrodnoBelarus

Personalised recommendations