Biochemistry (Moscow)

, Volume 70, Issue 2, pp 187–194

A historical review of cellular calcium handling, with emphasis on mitochondria

Review

Abstract

Calcium ions are of central importance in cellular physiology, as they carry the signal activating cells to perform their programmed function. Ca2+ is particularly suitable for this role because of its chemical properties and because its free concentration gradient between the extra cellular and the cytosolic concentrations is very high, about four orders of magnitude. The cytosolic concentration of Ca2+ is regulated by binding and chelation by various substances and by transport across plasma and intracellular membranes. Various channels, transport ATPases, uniporters, and antiporters in the plasma mem brane, endoplasmic and sarcoplasmic reticulum, and mitochondria are responsible for the transport of Ca2+ .The regulation of these transport systems is the subject of an increasing number of studies. In this short review, we focus on the mitochondrial transporters, i.e. the calcium uniporter used for Ca2+ uptake, and the antiporters used for the efflux, i.e. the Ca2+/Na+ antiporter in mitochondria and the plasma membrane of excitable cells,and the Ca2+/nH+ antiporter in liver and some other mitochondrial types. Mitochondria are of special interest in that Ca2+ stimulates respiration and oxidative phosphorylation to meet the energy needs of activated cells. The studies on Ca2+ and mitochondria began in the fifties, but interest in mito chondrial Ca2+ handling faded in the late seventies since it had become apparent that mitochondria in resting cells contain very low Ca2+. Interest increased again in the nineties also because it was discovered that mitochondria and Ca2+ had a central role in apoptosis and necrosis. This is of special interest in calcium overload and oxidative stress conditions, when the opening of the mitochondrial permeability transition pore is stimulated.

Key words

apoptosis calcium channels endoplasmic reticulum mitochondria permeability transition plasma membrane sarcoplasmic reticulum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Saris, N.-E. L., and Carafoli, E. (2004) in Calcium in Health and Disease, Rovaniemi, Finnish Lapland, 5–7 July, 2004 (Saris, N.-E. L., Westermarck, T., Carafoli, E., and Atroshi, F., eds.) University Press, Helsinki, p. 4.Google Scholar
  2. 2.
    Saris, N.-E. (1959) Finska Kemistsamf. Medd., 68, 65–72 (Swedish).Google Scholar
  3. 3.
    Saris, N.-E. (1963) Soc. Sci. Fenn.: Comment. Phys. Math., 28, 1–77.Google Scholar
  4. 4.
    Carafoli, E. (2003) TIBS, 28, 175–181.Google Scholar
  5. 5.
    Mitchell, P. (1966) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, U. K.Google Scholar
  6. 6.
    Azzone, G. F., Carafoli, E.,and Muscatello, U. (1960) Exp.Cell Res., 21, 447–467.Google Scholar
  7. 7.
    Williams, R. J. P. (1970) Quarterly. Rev. Chem. Soc., 24, 331–365.Google Scholar
  8. 8.
    Williams, R. J. P. (1974) Biochem. Soc. Symp., 39, 133–138.Google Scholar
  9. 9.
    Williams, R. J. P. (1976) Symp. Soc. Exp. Biol., 30, 1–17.Google Scholar
  10. 10.
    Williams, R. J. P. (1994) Cell Calcium, 16, 339–346.Google Scholar
  11. 11.
    Carafoli, E. (1987) Ann. Rev. Biochem., 56, 395–433.Google Scholar
  12. 12.
    Kretsinger, R. H., and Nockolds, C. E. (1973) J. Biol. Chem., 248, 3313–3326.Google Scholar
  13. 13.
    Wasserman, R. H., and Taylor, A. N. (1966) Fed. Proc., 28, 1834–1838.Google Scholar
  14. 14.
    Fatt, P., and Ginsborg, B. L. (1958) J. Physiol., 142, 516–543.Google Scholar
  15. 15.
    Putney, J. W., Jr. (1986) Cell Calcium, 7, 1–12.Google Scholar
  16. 16.
    Berridge, M. J. (1995) Biochem. J., 312, 1–11.Google Scholar
  17. 17.
    Reuter, H., and Seitz, N. (1968) J. Physiol., 195, 451–470.Google Scholar
  18. 18.
    Blaustein, M. P., and Hodgkin, A. L. (1968) J. Physiol., 198, 46P–48P.Google Scholar
  19. 19.
    Blaustein, M. P., and Hodgkin, A. L. (1969) J.Physiol., 200, 497–527.Google Scholar
  20. 20.
    Baker, P. F., Blaustein, M. P., Manil, J., and Steinhardt, R. A. (1967) J. Physiol., 191, 100P–102P.Google Scholar
  21. 21.
    Reeves, J. P., and Sutko, J. L. (1979) Proc. Natl. Acad. Sci. USA, 76, 590–594.Google Scholar
  22. 22.
    Grinwald, P. M. (1982) J. Mol. Cell. Cardiol., 14, 359–365.Google Scholar
  23. 23.
    Diederichs, F., Wittenberg, H., and Sommerfeld, U. (1990) J. Clin. Chem. Clin. Biochem., 28, 139–148.Google Scholar
  24. 24.
    Schatzmann, H. J. (1966) Experientia, 22, 364–368.Google Scholar
  25. 25.
    Caroni, P., and Carafoli, E. (1981) J. Biol. Chem., 256, 3263–3270.Google Scholar
  26. 26.
    Romer, P., Gazzotti, P., and Carafoli, E. (1977) Arch. Biochem. Biophys., 179, 578–583.Google Scholar
  27. 27.
    Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem., 256, 11209–11215.Google Scholar
  28. 28.
    Pedersen, P. L., and Carafoli, E. (1987) TIBS, 12, 146–150.Google Scholar
  29. 29.
    Ebashi, S., and Lipman, F. (1962) J. Cell. Biol., 14, 389–400.Google Scholar
  30. 30.
    Hasselbach, W., and Makinose, M. (1961) Biochem. Z., 333, 518–528.Google Scholar
  31. 31.
    Hasselbach, W., and Makinose, M. (1962) Biochem. Biophys. Res. Commun., 7, 132–136.Google Scholar
  32. 32.
    Brandl, C. J., Green, N. M., Korczak, B., and MacLennan, D. H. (1986) Cell, 44, 597–607.Google Scholar
  33. 33.
    Thevenod, F., Dehlinger-Kremer, M., Kemmer, T., Christian, A. L., Potter, B. V. L., and Schulz, I. (1989) J. Membr. Biol., 109, 173–182.Google Scholar
  34. 34.
    Constantin, L. L., Franzini-Armstrong, C., and Podolsky, R. J. (1985) Science, 147, 158–160.Google Scholar
  35. 35.
    Hasselbach, W. (1964) Progr. Biophys. Chem., 14, 167–222.Google Scholar
  36. 36.
    Le Peuch, C. J., Haiech, J., and Demaille, J. G. (1979) Biochemistry, 18, 5150–5157.Google Scholar
  37. 37.
    Gasser, J., Paganetti, P., Carafoli, E., and Chiesi, M. (1988) Eur. J. Biochem., 176, 535–541.Google Scholar
  38. 38.
    Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Nature, 405, 647–655.Google Scholar
  39. 39.
    Toyoshima, C., and Nomura, H. (2002) Nature, 418, 605–611.Google Scholar
  40. 40.
    Berridge, M., Lipp, P., and Bootman, M. (1999) Curr. Biol., 9, R157–159.Google Scholar
  41. 41.
    McPherson, P. S., and Campbell, K. P. (1993) J. Biol. Chem., 268, 13765–13768.Google Scholar
  42. 42.
    Slater, E. C., and Cleland, K. W. (1953) Biochem. J., 55, 566–580.Google Scholar
  43. 43.
    Maynard, L. S., and Cotzias, G. C. (1955) J. Biol. Chem., 214, 489 495.Google Scholar
  44. 44.
    Bartley, W., and Amoore, J. E. (1958) Biochem. J., 69, 348–360.Google Scholar
  45. 45.
    Mraz, F. R. (1962) Proc. Soc. Exp. Biol. Med., 111, 429–431.Google Scholar
  46. 46.
    Chance, B. (1956) Proc. 3rd Int. Congr. Biochem. Brussels (Liebeqc, ed. ) Academic Press, pp. 300–304.Google Scholar
  47. 47.
    De Luca, M., and Engstrom, G. (1961) Proc. Natl. Acad. Sci. USA, 47, 1744–1747.Google Scholar
  48. 48.
    Vasington, F. D., and Murphy, J. V. (1962) J. Biol. Chem., 237, 2670–2672.Google Scholar
  49. 49.
    Rossi, C. S., and Lehninger, A. L. (1963) Biochem. Z., 338, 698–713.Google Scholar
  50. 50.
    Carafoli, E., Rossi, C. L., and Lehninger, A. L. (1965) J. Biol. Chem., 240, 2254–2261.Google Scholar
  51. 51.
    Rottenberg, H., and Marbach, M. (1990) Biochim. Biophys. Acta, 1016, 87–98.Google Scholar
  52. 52.
    Carafoli, E. (1965) Biochim. Biophys. Acta, 97, 107–117.Google Scholar
  53. 53.
    Chance, B. (1965) J. Biol. Chem., 240, 2729–2748.Google Scholar
  54. 54.
    Saris, N. E., and Åkerman, K. E. O. (1980) Curr. Top. Bioenerg., 10, 103–179.Google Scholar
  55. 55.
    Reynafarje, B., and Lehninger, A. L. (1977) Biochem. Biophys. Res. Commun., 77, 1273–1279.Google Scholar
  56. 56.
    Åkerman, K. E. O., and Saris, N.-E. L. (1978) in Frontiers in Biological Energetics, Vol. 2, Academic Press, New York, pp. 1187–1195.Google Scholar
  57. 57.
    Azzone, G. F., Bragadin, M., Pozzan, T., and Dell ‘Antone, P. (1976) Biochim. Biophys. Acta, 459, 96–109.Google Scholar
  58. 58.
    Åkerman, K. E. O. (1978) Biochim. Biophys. Acta, 502, 359–366.Google Scholar
  59. 59.
    Sottocasa, G. L., Sandri, G., Panfili, E., de Bernard, B., Gazzotti, P., Vasington, F. D., and Carafoli, E. (1972) Biochem. Biophys. Res. Commun., 47, 808–813.Google Scholar
  60. 60.
    Panfili, E., Sandri, G., Sottocasa, G. L., Lunazzi, G., Liut, G., and Graziosi, G. (1976) Nature, 264, 185–186.Google Scholar
  61. 61.
    Panfili, E., Sandri, G., Liut, G., Stancher, B., and Sottocasa, G. L. (1983) in Calcium Binding Proteins (de Bernard, B., Sottocasa, G. L., Sandri, G., Carafoli, E., Taylor, A. N., Vanaman, T. C., and Williams, R. J. P., eds.) Elsevier Science Publishers, Amsterdam, pp. 347–354.Google Scholar
  62. 62.
    Mironova, G. D., Sirota, T. V., Pronevich, L. A., Trofimenko, N. V., Mironov, G. P., Grigorjev, P. A., and Kondrashova, M. N. (1982) J. Bioenerg. Biomembr.., 14, 213–225.Google Scholar
  63. 63.
    Saris, N.-E. L., Sirota, T. V., Virtanen, I., Niva, K., Penttilä, T., Dolgachova, L. P., and Mironova, G. D. (1993) J. Bioenerg. Biomembr., 25, 307–312.Google Scholar
  64. 64.
    Mironova, G. D., Baumann, M., Kolomytkin, O., Krasichkova, Z., Sirota, T., Virtanen, I., and Saris, N.-E. L. (1994) J. Bioenerg. Biomembr., 26, 231–238.Google Scholar
  65. 65.
    Zhou, S. D., Mironova, G., and Garlid, K. D. (1993) Biophys. J., 64, A40.Google Scholar
  66. 66.
    Zazueta, C., Zafra, G., Vera, G., Sánchez, C., and Chávez, E. (1998) J. Bioenerg. Biomembr., 30, 489–498.Google Scholar
  67. 67.
    Kirichok, Y., Krapivinsky, G., and Clapham, D. E. (2004) Nature, 427, 360–364.Google Scholar
  68. 68.
    Zvyagilskaya, R. A., Leikin, Yu. N., Kozhokaru, N. L., and Kotelnikova, A. V. (1983) Dokl. Akad. Nauk SSSR, 269, 1233–1240.Google Scholar
  69. 69.
    Bazhenova, E. N., Saris, N.-E. L., and Zvyagilskaya, R. A. (1998) Biochim. Biophys. Acta, 1371, 96–100.Google Scholar
  70. 70.
    Sparagna, G. C., Gunter, K. K., Sheu, S. S., and Gunter, T. E. (1995) J. Biol. Chem., 270, 27510–27510.Google Scholar
  71. 71.
    Buntinas, L., Gunter, K. K., Sparagna, G. C., and Gunter, T. E. (2001) Biochim. Biophys. Acta, 1504, 248–261.Google Scholar
  72. 72.
    Somlyo, A. P., Urbanics, R., Vadasz, G., Kovach, A. G. B., and Somlyo, A. V. (1985) Biochem. Biophys. Res. Commun., 132, 1071–1078.Google Scholar
  73. 73.
    Scarpa, A., and Graziotti, P. (1973) J. Gen. Physiol., 62, 756–772.Google Scholar
  74. 74.
    Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993) Science, 262, 744–747.Google Scholar
  75. 75.
    Kroner, H. (1986) Arch. Biochem. Biophys., 251, 525–535.Google Scholar
  76. 76.
    Saris, N.-E. L., and Kroner, H. (1990) J. Bioenerg. Biomembr., 22, 81–90.Google Scholar
  77. 77.
    Kasparinsky, F. O., and Vinogradov, A. D. (1996) FEBS Lett., 389, 293–296.Google Scholar
  78. 78.
    Ernster, L., Nakazawa, T., and Nordenbrand, K. (1978) in Proton and Calcium Pumps (Azzone, G. F., et al., eds. ), pp. 163–176.Google Scholar
  79. 79.
    Hughes, B. P., and Exton, J. H. (1983) Biochem. J., 212, 773–782.Google Scholar
  80. 80.
    Allshire, A., Bernardi, P., and Saris, N.-E. L. (1985) Biochim. Biophys. Acta, 807, 202–208.Google Scholar
  81. 81.
    Vainio, H., Mela, L., and Chance, B. (1970) Eur. J. Biochem., 12, 387–391.Google Scholar
  82. 82.
    Åkerman, K. E. O., Wikström, M. K. F., and Saris, N.-E. (1977) Biochim. Biophys. Acta, 464, 287–294.Google Scholar
  83. 83.
    Bragadin, M., Pozzan, T., and Azzone, G. F. (1980) Biochemistry, 18, 5972–5978.Google Scholar
  84. 84.
    Szewczyk, A., and Marban, E. (1999) TIBS, 20, 157–161.Google Scholar
  85. 85.
    Saris, N. E., Wikström, M. K. F., and Seppalä, A. J. (1969) FEBS Symp., 17, 363–368.Google Scholar
  86. 86.
    Lenzen, S., Hickethier, R., and Panten, U. (1986) J. Biol. Chem., 261, 16478–16483.Google Scholar
  87. 87.
    Votyakova, T. V., Bazhenova, E. N., and Zvjagilskaya, R. A. (1990) FEBS Lett., 261, 139–141.Google Scholar
  88. 88.
    Reed, P. W., and Lardy, H. (1972) J. Biol. Chem., 247, 6970–6977.Google Scholar
  89. 89.
    Carafoli, E., Tiozzo, R., Lugli, G., Crovetti, F., and Kratzing, C. (1974) J. Mol. Cell. Cardiol., 6, 361–371.Google Scholar
  90. 90.
    Crompton, M., Capano, M., and Carafoli, E. (1976) Eur. J. Biochem., 69, 453–462.Google Scholar
  91. 91.
    Carafoli, E. (1979) FEBS Lett., 104, 1–5.Google Scholar
  92. 92.
    Bernardi, P. (1999) Physiol. Rev., 79, 1127–1155.Google Scholar
  93. 93.
    Gunter, T. E., Chace, J. H., Puskin, J. S., and Gunter, K. K. (1983) Biochemistry, 22, 6341–6351.Google Scholar
  94. 94.
    Saris, N.-E. L. (1987) Acta Chem. Scand., B41, 79–82.Google Scholar
  95. 95.
    Villa, A., Garcia Simón, M. I., Blanco, P., Sesé, B., Bogónez, E., and Satrustegui, J. (1998) Biochim. Biophys. Acta, 1373, 347–359.Google Scholar
  96. 96.
    Zoratti, M., and Szabó, I. (1995) Biochim. Biophys. Acta, 1241, 139–176.Google Scholar
  97. 97.
    Hunter, D. R., Haworth, R. A., and Southard, J. H. (1976) J. Biol. Chem., 251, 5069–5077.Google Scholar
  98. 98.
    Chernyak, R., and Bernardi, P. (1996) Eur. J. Biochem., 238, 623–630.Google Scholar
  99. 99.
    Nicolli, A., Basso, E., Petronilli, V., Wenger, R. M., and Bernardi, P. (1996) J. Biol. Chem., 271, 2185–2192.Google Scholar
  100. 100.
    Crompton, M., Ellinger, H., and Costi, A. (1988) Biochem. J., 255, 357–360.Google Scholar
  101. 101.
    Broekemeier, K. M., Dempsey, M. E., and Pfeiffer, D. R. (1989) J. Biol. Chem., 264, 7826–7830.Google Scholar
  102. 102.
    Toninello, A., Siliprandi, D., and Siliprandi, N. (1983) Biochem. Biophys. Res. Commun., 111, 792–797.Google Scholar
  103. 103.
    Le Quoc, K., and Le Quoc, D. (1988) Arch. Biochem. Biophys., 265, 249–257.Google Scholar
  104. 104.
    Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K. Y. (1998) Biochim. Biophys. Acta, 1366, 79–94.Google Scholar
  105. 105.
    Szabó, I., De Pinto, V., and Zoratti, M. (1993) FEBS Lett., 330, 206–210.Google Scholar
  106. 106.
    Fontaine, E., Eriksson, O., Ichas, F., and Bernardi, P. (1998) J. Biol. Chem., 273, 12662–12668.Google Scholar
  107. 107.
    Moini, H., Packer, L., and Saris, N.-E. L. (2002) Toxicol. Appl. Pharmacol., 182, 84–90.Google Scholar
  108. 108.
    Saris, N.-E. L., Karjalainen, A., Teplova, V. V., and Lindros, K. O. (1998) Biochem. Mol. Biol. Int., 40, 127–134.Google Scholar
  109. 109.
    Morkunaite Haimi, S., Teplova, V. V., Stolze, K., Kruglov, A. G., Gille, L., Nohl, H., and Saris, N.-E. L. (2003) Biochem. Pharmacol., 65, 43–49.Google Scholar
  110. 110.
    Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. (2001) FEBS Lett., 495, 12–15.Google Scholar
  111. 111.
    Zhao, M., Antunes, F., Eaton, J. W., and Brunk, U. T. (2003) Eur. J. Biochem., 270, 3778–3786.Google Scholar
  112. 112.
    Lemasters, J. J., and Nieminen, A. L. (1997) Biosci. Rep., 17, 281–291.Google Scholar
  113. 113.
    Duchen, M. R., McGuinness, O., Brown, L. A., and Crompton, M. (1993) Cardiovasc. Res., 27, 1790–1794.Google Scholar
  114. 114.
    Cai, J., Yang, J., and Jones, D. P. (1998) Biochim. Biophys. Acta, 1336, 139–149.Google Scholar
  115. 115.
    Skulachev, V. P. (1996) Quarterly Rev. Biophys., 29, 169–202.Google Scholar
  116. 116.
    Leist, M., and Nicotera, P. (1997) Biochem. Biophys. Res. Commun., 236, 1–9.Google Scholar
  117. 117.
    Sharpe, J. C., Arnoult, D., and Youle, R. J. (2004) Biochim. Biophys. Acta, 1644, 107–113.Google Scholar
  118. 118.
    Waite, M., van Deenen, L. L. M., Ruigrok, T. J. C., and Elbers, P. F. (1969) J. Lipid Res., 10, 509–688.Google Scholar
  119. 119.
    Seppalä, A. J., Saris, N.-E. L., and Gauffin, M. L. (1971) Biochem. Pharmacol., 20, 305–313.Google Scholar
  120. 120.
    Eriksson, E., and Saris, N.-E. L. (1989) Biol. Chem. Hoppe Seyler, 370, 1315–1320.Google Scholar
  121. 121.
    Agafonov, A., Gritsenko, E., Belosludtsev, K., Gateau-Roesch, O., Saris, N.-E. L., and Mironova, G. D. (1990) Biochim. Biophys. Acta, 1609, 153–160.Google Scholar
  122. 122.
    Gunter, T. E., and Pfeiffer, D. R. (1990) Am. J. Physiol., 258, C755–C786.Google Scholar
  123. 123.
    Skulachev, V. P. (1991) FEBS Lett., 294, 158–162.Google Scholar
  124. 124.
    Wojtczak, L., and Wieckowski, M. R. (1999) J. Bioenerg. Biomembr., 31, 447–455.Google Scholar
  125. 125.
    Oliver, M. F., Kurien, V. A., and Greenwood, T. W. (1968) Lancet, 1, 710–715.Google Scholar
  126. 126.
    Kong, J. Y., and Rabkin, S. W. (2000) Biochim. Biophys. Acta, 1485, 45–55.Google Scholar
  127. 127.
    Sparagna, G. C., Hickson Bick, D. L., Buja, M., and McMillan, J. B. (2000) Am. J. Physiol., 279, H2123–H2132.Google Scholar
  128. 128.
    Mironova, G. D., Gateau Roesch, O., Levrat, C., Gritsenko, E., Pavlov, E., Lazareva, A. V., Limarenko, E. A., Rey, C., Louisot, P., and Saris, N.-E. L. (2001) J. Bioenerg. Biomembr., 33, 319–331.Google Scholar
  129. 129.
    McCormack, J. G., and Denton, R. M. (1986) TIBS, 11, 258–262.Google Scholar
  130. 130.
    Murphy, A. N., Kelleher, J. K., and Fiskum, G. (1990) J. Biol. Chem., 265, 10527–10534.Google Scholar
  131. 131.
    Territo, P. R., Mootha, V. K., French, S. A., and Balaban, R. S. (2000) Am. J. Physiol., 278, C423–C435.Google Scholar
  132. 132.
    Ko, Y. H., Pan, W., Inoue, C., and Pedersen, P. L. (2002) Mitochondrion, 1, 339–348.Google Scholar
  133. 133.
    Azarashvili, T. S., Odinokova, I. V., and Evtodienko, Yu. V. (1999) Biochemistry (Moscow), 64, 556–560.Google Scholar
  134. 134.
    Azarashvily, T. S., Tyynelä, J., Baumann, M., Evtodienko, Yu. V., and Saris, N.-E. L. (2000) Biochem. Biophys. Res. Commun., 270, 741–744.Google Scholar
  135. 135.
    Evtodienko, Yu. V., Azarashvili, T. S., Odinokova, I. V., and Saris, N.-E. (2000) Biochemistry (Moscow), 65, 1023–1026.Google Scholar
  136. 136.
    Saris, N.-E. L., Krestinina, O. V., Azarashvili, T. S., Odinokova, I. V., Tyynelä, J., and Evtodienko, Yu. V. (2001) in Advances in Magnesium Research:Nutrition and Health (Rayssiguier, Y., Mazur, A., and Durlach, J., eds. ) John Libbey & Co, London, pp. 101–106.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  1. 1.Department of Applied Biochemistry and MicrobiologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of BiochemistryUniversity of PadovaPadovaItaly

Personalised recommendations