Advertisement

Biology & Philosophy

, 34:54 | Cite as

Beyond networks: mechanism and process in evo-devo

  • James DiFrisco
  • Johannes Jaeger
Article

Abstract

Explanation in terms of gene regulatory networks (GRNs) has become standard practice in evolutionary developmental biology (evo-devo). In this paper, we argue that GRNs fail to provide a robust, mechanistic, and dynamic understanding of the developmental processes underlying the genotype–phenotype map. Explanations based on GRNs are limited by three main problems: (1) the problem of genetic determinism, (2) the problem of correspondence between network structure and function, and (3) the problem of diachronicity, as in the unfolding of causal interactions over time. Overcoming these problems requires dynamic mechanistic explanations, which rely not only on mechanistic decomposition, but also on dynamic modeling to reconstitute the causal chain of events underlying the process of development. We illustrate the power and potential of this type of explanation with a number of biological case studies that integrate empirical investigations with mathematical modeling and analysis. We conclude with general considerations on the relation between mechanism and process in evo-devo.

Keywords

Evo-devo Genotype–phenotype map Dynamical systems Mechanistic explanation Gene regulatory networks Homology 

Notes

Acknowledgements

We thank two anonymous reviewers and an editor of this journal for insightful comments. Thanks also to audiences at ISHPSSB 2019, the 2019 Venice Summer School in Evo-Devo, the 2019 Summer School in Philosophy of the Life Sciences at University of Rijeka, Institut Monod in Paris, and the EvoDevo Seminar Series in Cambridge for feedback and vigorous discussion. JD thanks the Research Foundation – Flanders (FWO) (Grant No. 12W1818N) and the Konrad Lorenz Institute for Evolution and Cognition Research for financial support.

References

  1. Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22Google Scholar
  2. Alberch P (1991) From genes to phenotype: dynamical systems and evolvability. Genetica 84:5–11CrossRefGoogle Scholar
  3. Amundson R (2005) The changing role of the embryo in evolutionary thought: structure and synthesis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Austin CJ (2016) The ontology of organisms: mechanistic modules or patterned processes? Biol Philos 31:639–662CrossRefGoogle Scholar
  5. Bateson W (1909) Mendel’s principles of heredity. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Bechtel W (2011) Mechanism and biological explanation. Philos Sci 78:533–557CrossRefGoogle Scholar
  7. Bechtel W (2012) Understanding endogenously active mechanisms: a scientific and philosophical challenge. Eur J Philos Sci 2:233–248CrossRefGoogle Scholar
  8. Bechtel W, Abrahamsen A (2005) Explanation: a mechanist alternative. Stud Hist Philos Biol Biomed Sci 36:421–441CrossRefGoogle Scholar
  9. Bechtel W, Abrahamsen A (2010) Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science. Stud Hist Philos Sci 41:321–333CrossRefGoogle Scholar
  10. Bonduriansky R, Day T (2018) Extended heredity: a new understanding of inheritance and evolution. Princeton University Press, PrincetonCrossRefGoogle Scholar
  11. Brigandt I (2013) Systems biology and the integration of mechanistic explanation and mathematical explanation. Stud Hist Philos Biol Biomed Sci 44:477–492CrossRefGoogle Scholar
  12. Brigandt I (2015) Evolutionary developmental biology and the limits of philosophical accounts of mechanistic explanation. In: Braillard P-A, Malaterre C (eds) Explanation in biology. Springer, Dordrecht, pp 135–173CrossRefGoogle Scholar
  13. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357CrossRefGoogle Scholar
  14. Burns J (1970) The synthetic problem and the genotype-phenotype relation in cellular metabolism. In: Waddington CH (ed) Towards a theoretical biology, vol III. Edinburgh University Press, Edinburgh, pp 47–51Google Scholar
  15. Calcott B (2009) Lineage explanations: explaining how biological mechanisms change. Br J Philos Sci 60:51–78CrossRefGoogle Scholar
  16. Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485CrossRefGoogle Scholar
  17. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36CrossRefGoogle Scholar
  18. Cooke J (1998) A gene that resuscitates a theory—somitogenesis and a molecular oscillator. Trends Genet 14:85–88CrossRefGoogle Scholar
  19. Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476CrossRefGoogle Scholar
  20. Crombach A, Wotton KR, Jiménez-Guri E, Jaeger J (2016) Gap gene regulatory dynamics evolve along a genotype network. Mol Biol Evol 33:1293–1307CrossRefGoogle Scholar
  21. Dale KJ, Pourquié O (2000) A clock-work somite. BioEssays 22:72–83CrossRefGoogle Scholar
  22. Danchin E, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486CrossRefGoogle Scholar
  23. Darwin C (1859) On the origin of species by means of natural selection. John Murray, London. Re-published 2006, Dover Publications, New YorkGoogle Scholar
  24. Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468:911–920CrossRefGoogle Scholar
  25. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800CrossRefGoogle Scholar
  26. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan ZJ, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678CrossRefGoogle Scholar
  27. Dequéant M-L, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquié O (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314:1595–1598CrossRefGoogle Scholar
  28. DiFrisco J (2019) Developmental homology. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology: a reference guide. Springer, ChamGoogle Scholar
  29. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338CrossRefGoogle Scholar
  30. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  31. Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine, and evloution. Sinauer Associates, SunderlandGoogle Scholar
  32. Goodwin BC (1982) Development and evolution. J Theor Biol 97:43–55CrossRefGoogle Scholar
  33. Green S, Fagan M, Jaeger J (2015) Explanatory integration challenges in evolutionary systems biology. Biol Theory 10:18–35CrossRefGoogle Scholar
  34. Griesemer J (2000) Reproduction and the reduction of genetics. In: Beurton PJ, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution: historical and epistemological perspectives. Cambridge University Press, Cambridge, pp 240–285CrossRefGoogle Scholar
  35. Griesemer J (2006) Genetics from an evolutionary process perspective. In: Neumann-Held EM, Rehmann-Sutter C (eds) Genes in development: re-reading the molecular paradigm. Duke University Press, Durham, pp 199–237Google Scholar
  36. Haag ES, True JR (2018) Developmental system drift. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology. Springer, BerlinGoogle Scholar
  37. Hall BK (1994) Homology: the hierarchical basis of comparative biology. Academic Press, San DiegoGoogle Scholar
  38. Hansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67(12):3501–3511CrossRefGoogle Scholar
  39. Holland PWH (1999) The future of evolutionary developmental biology. Nature 402:C41–C44CrossRefGoogle Scholar
  40. Horder TJ (1989) Syllabus for an embryological synthesis. In: Wake DB, Roth G (eds) Complex organismal functions: integration and evolution in vertebrates. Wiley, Chichester, pp 315–348Google Scholar
  41. Hubaud A, Pourquié O (2014) Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15:709–720CrossRefGoogle Scholar
  42. Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34CrossRefGoogle Scholar
  43. Jacob F, Monod J (1959) Gènes de structure et gènes de régulation dans la biosynthèse des protéines. Comptes-rendus de l’Academie des Sciences de Paris 249:1282–1284Google Scholar
  44. Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68:243–274CrossRefGoogle Scholar
  45. Jaeger J (2018) Shift happens: the developmental and evolutionary dynamics of the gap gene system. Curr Opin Syst Biol 11:65–73CrossRefGoogle Scholar
  46. Jaeger J (2019) Dynamic structures in evo-devo: from morphogenetic fields to evolving organisms. In: Fusco G (ed) Perspectives on evolutionary and developmental biology: essays for Alessandro Minelli. Padova University Press, Padova, pp 335–355Google Scholar
  47. Jaeger J, Crombach A (2012) Life’s attractors: understanding developmental systems through reverse engineering and in silico evolution. In: Soyer O (ed) Evolutionary systems biology. Springer, Berlin, pp 93–120CrossRefGoogle Scholar
  48. Jaeger J, Monk N (2014) Bioattractors: dynamical systems theory and the evolution of regulatory processes. J Physiol 592:2267–2281CrossRefGoogle Scholar
  49. Jaeger J, Monk N (2019) Dynamical modularity of the genotype–phenotype map. In: Crombach A (ed) Evolutionary systems biology 2.0. Springer, Berlin (forthcoming) Google Scholar
  50. Jaeger J, Sharpe J (2014) On the concept of mechanism in development. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 56–78CrossRefGoogle Scholar
  51. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004a) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371CrossRefGoogle Scholar
  52. Jaeger J, Blagov M, Kosman D, Kozlov KN, Manu Myasnikova E, Surkova S, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004b) Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics 167:1721–1737CrossRefGoogle Scholar
  53. Jaeger J, Irons D, Monk N (2012) The inheritance of process: a dynamical systems approach. J Exp Zool B Mol Dev Evol 318B:591–612CrossRefGoogle Scholar
  54. Jiménez A, Cotterell J, Munteanu A, Sharpe J (2017) A spectrum of modularity in multi-functional gene circuits. Mol Syst Biol 13:925CrossRefGoogle Scholar
  55. King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116CrossRefGoogle Scholar
  56. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837CrossRefGoogle Scholar
  57. Krol AJ, Roellig D, Dequéant M-L, Tassy O, Glynn E, Hattem G, Mushegian A, Oates AC, Pourquié O (2011) Evolutionary plasticity of segmentation clock networks. Development 138:2783–2792CrossRefGoogle Scholar
  58. Kronholm I (2017) Adaptive evolution and epigenetics. In: Tollefsbol TO (ed) Handbook of epigenetics: the new molecular and medical genetics. Academic Press, LondonGoogle Scholar
  59. Manu Surkova S, Spirov AV, Gursky V, Janssens H, Kim A-R, Radulescu O, Vanario-Alonso CE, Sharp DH, Samsonova M, Reinitz J (2009) Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput Biol 5:e1000303CrossRefGoogle Scholar
  60. Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R (2006) Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci USA 103:1313–1318CrossRefGoogle Scholar
  61. Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends Genet 25:395–403CrossRefGoogle Scholar
  62. Mayr E (1961) Cause and effect in biology. Science 134:1501–1506CrossRefGoogle Scholar
  63. Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc B Biol Sci 278:2705–2713CrossRefGoogle Scholar
  64. Monod J, Jacob F (1961) General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401CrossRefGoogle Scholar
  65. Morange M (2014) From genes to gene regulatory networks: the progressive historical construction of a genetic theory of development and evolution. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 174–182CrossRefGoogle Scholar
  66. Morgan TH, Sturtevant AH, Muller HJ, Bridges CB (1915) The mechanism of Mendelian heredity. Henry Holt, New YorkCrossRefGoogle Scholar
  67. Nijhout HF (1990) Metaphors and the role of genes in development. BioEssays 12(9):441–446CrossRefGoogle Scholar
  68. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801CrossRefGoogle Scholar
  69. Nüsslein-Volhard C, Frohnhofer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1687CrossRefGoogle Scholar
  70. Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:625–639CrossRefGoogle Scholar
  71. Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci USA 105:5955–5962CrossRefGoogle Scholar
  72. Orr HA (2000) Adaptation and the cost of complexity. Evolution 54(1):13–20CrossRefGoogle Scholar
  73. Oster G, Alberch P (1982) Evolution and bifurcation of developmental programs. Evolution 36:444–459CrossRefGoogle Scholar
  74. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91:639–648CrossRefGoogle Scholar
  75. Panovska-Griffiths J, Page KM, Briscoe J (2013) A gene regulatory motif that generates oscillatory or multiway switch outputs. J R Soc Interface 10:20120826CrossRefGoogle Scholar
  76. Peter IS, Davidson EH (2015) Genomic control process: development and evolution. Elsevier, AmsterdamGoogle Scholar
  77. Peter IS, Davidson EH (2017) Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci USA 114:5862–5869CrossRefGoogle Scholar
  78. Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as a blueprint’ metaphor. Philos Trans R Soc B 365:557–566CrossRefGoogle Scholar
  79. Riedl R (1978) Order in living organisms. Wiley, ChichesterGoogle Scholar
  80. Schmalhausen II (1949) Factors of evolution. Blackiston Company, PhiladelphiaGoogle Scholar
  81. Scholl R, Pigliucci M (2014) The proximate-ultimate distinction and evolutionary developmental biology: causal irrelevance versus explanatory abstraction. Biol Philos 30(5):653–670CrossRefGoogle Scholar
  82. Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62:2155–2177CrossRefGoogle Scholar
  83. Thom R (1976) Structural stability and morphogenesis. W. A. Benjamin, ReadingGoogle Scholar
  84. True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3(2):109–119CrossRefGoogle Scholar
  85. Verd B, Crombach A, Jaeger J (2017) Dynamic maternal gradients control timing and shift-rates for Drosophila gap gene expression. PLoS Comput Biol 13:e1005285CrossRefGoogle Scholar
  86. Verd B, Clark E, Wotton KR, Janssens H, Jiménez-Guri E, Crombach A, Jaeger J (2018) A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila. PLoS Biol 16:e2003174CrossRefGoogle Scholar
  87. Verd B, Monk NAM, Jaeger J (2019) Modularity, criticality, and evolvability of a developmental gene regulatory network. eLIFE 8:e42832CrossRefGoogle Scholar
  88. von Dassow G, Munro E (1999) Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. J Exp Zool Mol Dev Evol 285:307–325CrossRefGoogle Scholar
  89. Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565CrossRefGoogle Scholar
  90. Waddington CH (1957) The strategy of the genes. Macmillan, LondonGoogle Scholar
  91. Wagner A (2005) Robustness and evolvability in living systems. Princeton University Press, PrincetonGoogle Scholar
  92. Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479CrossRefGoogle Scholar
  93. Wagner A (2008) Robustness and evolvability: a paradox resolved. Proc Roy Soc London Series B 275:91–100CrossRefGoogle Scholar
  94. Wagner A (2011) The origins of evolutionary innovations. Oxford University Press, OxfordCrossRefGoogle Scholar
  95. Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, PrincetonCrossRefGoogle Scholar
  96. Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976CrossRefGoogle Scholar
  97. Wagner GP, Chiu C-H, Laubichler M (2000) Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. Am Zool 40:819–831Google Scholar
  98. Wallace B (1986) Can embryologists contribute to an understanding of evolutionary mechanisms? In: Bechtel W (ed) Integrating scientific disciplines. Martinus Nijhoff, Dordrecht, pp 149–163CrossRefGoogle Scholar
  99. Walsh DM (2015) Organisms, agency, and evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  100. Waters CK (2007) Causes that make a difference. J Philos 104(11):551–579CrossRefGoogle Scholar
  101. Webster G, Goodwin BC (1996) Form and transformation: generative and relational principles in biology. Cambridge University Press, CambridgeGoogle Scholar
  102. Weiss KM (2005) The phenogenetic logic of life. Nat Rev Genet 6:36–45CrossRefGoogle Scholar
  103. Weiss KM, Fullerton SM (2000) Phenogenetic drift and the evolution of genotype-phenotype relationships. Theor Popul Biol 57:187–195CrossRefGoogle Scholar
  104. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  105. Wimsatt W (2007) Re-engineering philosophy for limited beings: piecewise approximations to reality. Harvard University Press, CambridgeGoogle Scholar
  106. Wotton KR, Jiménez-Guri E, Crombach A, Janssens H, Alcaine-Colet A, Lemke S, Schmidt-Ott U, Jaeger J (2015) Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. eLIFE 4:e04785CrossRefGoogle Scholar
  107. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of PhilosophyKU LeuvenLeuvenBelgium
  2. 2.Complexity Science Hub, ViennaViennaAustria

Personalised recommendations