Biology & Philosophy

, 34:8 | Cite as

Systemic functional adaptedness and domain-general cognition: broadening the scope of evolutionary psychology

  • Michael LundieEmail author


Evolutionary psychology tends to be associated with a massively modular cognitive architecture. On this framework of human cognition, an assembly of specialized information processors called modules developed under selection pressures encountered throughout the phylogenic history of hominids. The coordinated activity of domain-specific modules carries out all the processes of belief fixation, abstract reasoning, and other facets of central cognition. Against the massive modularity thesis, I defend an account of systemic functional adaptedness, according to which non-modular systems emerged because of adaptive problems imposed by the intrinsic physiology of the evolving human brain. The proposed reformulation of evolutionary theorizing draws from neural network models and Cummins’ (J Philos 72(20):741–765, 1975) account of systemic functions to identify selection pressures that gave rise to non-modular, domain-general mechanisms in cognitive architecture.


Adaptation Connectome Modularity Rich club Systemic function Selection pressure 



I am grateful to Daniel Weiskopf, Neil Van Leeuwen, Andrea Scarantino, David Washburn, Daniel Krawczyk, and Matthias Michel for valuable feedback on previous drafts. Much appreciation also goes to the anonymous reviewers for their constructive commentary. The points raised in their assessments significantly benefitted the revised manuscript.


  1. Amundson R, Lauder G (1994) Function without purpose: the uses of causal role function inevolutionary biology. Biol Philos 9(4):443–469CrossRefGoogle Scholar
  2. Anderson ML, Penner-Wilger M (2013) Neural reuse in the evolution and development of the brain: evidence for developmental homology? Dev Psychobiol 55(1):42–51CrossRefGoogle Scholar
  3. Anderson ML, Pessoa L (2011) Quantifying the diversity of neural activations in individual brain regions. In: Carlson L, Hölscher C, Shipley T (eds) Proceedings of the 33rd annual conference of the Cognitive Science Society. Cognitive Science Society, Austin, pp 2421–2426Google Scholar
  4. Atkinson A, Wheeler M (2003) Evolutionary psychology’s grain problem and the cognitive neuroscience of reasoning. In: Over D (ed) Evolution and the psychology of reasoning: the debate. Psychology Press, Hove, pp 61–99Google Scholar
  5. Baars B (1997) In the theater of conciousness. Oxford University Press, New YorkCrossRefGoogle Scholar
  6. Baars B (1998) A cognitive theory of consciousness. Cambridge University Press, CambridgeGoogle Scholar
  7. Baars B (2002) The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci 6(1):47–52CrossRefGoogle Scholar
  8. Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10:659–669CrossRefGoogle Scholar
  9. Baggio HC, Segura B, Junque C, de Reus MA, Sala-Llonch R, van den Heuvel MP (2015) Rich club organization and cognitive performance in healthy older participants. J Cogn Neurosci 27(9):1801–1810CrossRefGoogle Scholar
  10. Barrett CH (2012) A hierarchical model of the evolution of human brain specialization. PNAS 109(1):10733–10740CrossRefGoogle Scholar
  11. Barrett CH (2015) The shape of thought: how mental adaptations evolve. Oxford University Press, New YorkCrossRefGoogle Scholar
  12. Bola M, Sabel BA (2015) Dynamic reorganization of brain functional networks during cognition. NeuroImage 144:398–413CrossRefGoogle Scholar
  13. Boureau Y, Sokol-Hessner P, Daw ND (2015) Deciding how to decide: self-control and meta decision making. Trends Cogn Sci 19(11):700–710CrossRefGoogle Scholar
  14. Boyer P (2015) How natural selection shapes conceptual structure. In: Margolis E, Lawrence S (eds) The conceptual mind: new directions in the study of concepts. MIT Press, Cambridge, pp 185–200Google Scholar
  15. Brewer B (1999) Perception and reason. Oxford University Press, OxfordGoogle Scholar
  16. Buller D (2005) Adapting minds: evolutionary psychology and the persistent quest for human nature. MIT Press, CambridgeGoogle Scholar
  17. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefGoogle Scholar
  18. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349CrossRefGoogle Scholar
  19. Bunge SA, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cereb Cortex 15(3):239–249CrossRefGoogle Scholar
  20. Buss D (1995) Evolutionary psychology: a new paradigm for psychological science. Psychol Enquiry 6(1):1–30CrossRefGoogle Scholar
  21. Buss D (2005) The handbook of evolutionary psychology. Wiley, HobokenGoogle Scholar
  22. Caramazza A, Shelton J (1998) Domain-specific knowledge systems in the brain: the animate inanimate distinction. J Cogn Neurosci 10:1–34CrossRefGoogle Scholar
  23. Carruthers P (2004) The mind is a system of modules shaped by natural selection. In: Hitchcock C (ed) Contemporary debates in philosophy of science. Wiley Blackwell, Upper Saddle River, pp 293–311Google Scholar
  24. Carruthers P (2006) The case for massively modular models of mind. In: Stainton RJ (ed) Contemporary debates in cognitive science. Wiley-Blackwell, Upper Saddle River, pp 3–21Google Scholar
  25. Carruthers P (2013a) On central cognition. Philos Stud 170(1):143–162CrossRefGoogle Scholar
  26. Carruthers P (2013b) Evolution of working memory. PNAS 110(2):10371–10378CrossRefGoogle Scholar
  27. Chklovskii DB, Koulakov AA (2004) Maps in the brain: what can we learn from them? Annu Rev Neurosci 27:369–392CrossRefGoogle Scholar
  28. Cocchi L, Zalesky A, Fornito A, Mattingley JB (2013) Dynamic cooperation and competition between brain systems during cognitive control. Trends Cogn Sci 17(10):493–501CrossRefGoogle Scholar
  29. Cohen JR, D’Esposito M (2016) The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci 36:12083–12094CrossRefGoogle Scholar
  30. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355CrossRefGoogle Scholar
  31. Cosmides L (1989) The logic of social exchange: has natural selection shaped how humans reason? Studies with the Wason selection task. Cognition 31(3):187–276CrossRefGoogle Scholar
  32. Cosmides L, Tooby J (1994) Origins of domain specificity: the evolution of functional organization. In: Hirschfield LA, Gelman S (eds) Mapping the mind. Cambridge University Press, Cambridge, pp 85–116CrossRefGoogle Scholar
  33. Cosmides L, Tooby J (1997a) The modular nature of human intelligence. In: Scheibel A, Schopf JW (eds) The origins and evolution of intelligence. Jones and Bartlett Publishers, Cambridge, pp 71–101Google Scholar
  34. Cosmides L, Tooby J (1997b) Dissecting the computational architecture of social inference mechanisms. Ciba Found Symp 208:132–156Google Scholar
  35. Cosmides L, Tooby J (2000) The cognitive neuroscience of social reasoning. In: Gazzaniga MS (ed) The new cognitive neurosciences, 2nd edn. MIT Press, Cambridge, pp 1259–1270Google Scholar
  36. Cummins R (1975) Functional analysis. J Philos 72(20):741–765CrossRefGoogle Scholar
  37. Davies PS (2000) The nature of natural norms: why selected functions are systemic capacity functions. Nous 34(1):85–107CrossRefGoogle Scholar
  38. Davies PS, Fetzer J, Foster T (1995) Logical reasoning and domain specificity—a critique of the social exchange theory of reasoning. Biol Philos 10(1):1–37CrossRefGoogle Scholar
  39. De Reus MA, van den Heuvel MP (2013) Rich club organization and intermodule communication in the cat connectome. J Neurosci 33(32):12929–12939CrossRefGoogle Scholar
  40. De Reus MA, van den Heuvel MP (2014) Simulated rich club lesioning in brain networks: a scaffold for communication and integration? Front Hum Neurosci 8(647):1–5Google Scholar
  41. Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227CrossRefGoogle Scholar
  42. Desimone R, Duncan J (1995) Neural mechanisms of selective attention. Annu Rev Neurosci 18:193–222CrossRefGoogle Scholar
  43. Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179CrossRefGoogle Scholar
  44. Elman JL, Bates EA, Johnson MH, Karmiloff-Smith A, Parisi D, Plunkett K (1996) Rethinking innateness: a connectionist perspective on development. MIT Press, CambridgeGoogle Scholar
  45. Evans G (1982) The varieties of reference. Oxford University Press, OxfordGoogle Scholar
  46. Fawcett TW, Fallenstein B, Higginson AD, Houston AI, Mallpress D, Trimmer PC, McNamara JM (2014) The evolution of decision rules in complex environments. Trends Cogn Sci 18(3):153–161CrossRefGoogle Scholar
  47. Fedorenko E (2014) The role of domain-general cognitive control in language comprehension. Front Neurosci 5(335):1–17Google Scholar
  48. Fodor J (1983) The modularity of mind. MIT Press, CambridgeGoogle Scholar
  49. Fodor J (1994) Concepts: a potboiler. Cognition 50:95–113CrossRefGoogle Scholar
  50. Fodor J (2000) The mind doesn’t work that way. MIT Press, CambridgeCrossRefGoogle Scholar
  51. Fodor J, Lepore E (1996) The red herring and the pet fish: why concepts still can’t be prototypes. Cognition 58:253–270CrossRefGoogle Scholar
  52. Fodor J, Piattelli-Palmarini M (2010) What Darwin got wrong. Farrar, Straus, Giroux, New YorkGoogle Scholar
  53. Fox PT, Laird AR, Fox SP, Fox M, Uecker AM, Crank M, Lancaster JL (2005) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25:185–198CrossRefGoogle Scholar
  54. Fuster J (2008) The prefrontal cortex, 4th edn. Academic Press, LondonGoogle Scholar
  55. Gigerenzer G, Hug K (1992) Domain-specific reasoning: social contracts, cheating, and perspective change. Cognition 43:127–171CrossRefGoogle Scholar
  56. Godfrey-Smith P (1986) Complexity and the function of mind in nature. Cambridge University Press, CambridgeGoogle Scholar
  57. Godfrey-Smith P (2010) It got eaten. Lond Rev Books 32(13):29–30Google Scholar
  58. Godfrey-Smith P (2013) Philosophy of biology. Princeton University Press, PrincetonCrossRefGoogle Scholar
  59. Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485CrossRefGoogle Scholar
  60. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8(1):4–15CrossRefGoogle Scholar
  61. Grayson DS, Ray S, Carpenter S, Iyer S, Costa Dias TG, Stevens C, Nigg JT, Fair DA (2014) Structural and functional rich club organization of the brain in children and adults. PLoS ONE 9(2):e88297CrossRefGoogle Scholar
  62. Green M (2016) Expressing, showing, and representing. In: Abel C, Smith J (eds) Emotional expression: philosophical, psychological, and legal perspectives. Cambridge University Press, New York, pp 1–24Google Scholar
  63. Hagoort P (2005) On Broca, brain and binding: a new framework. Trends Cogn Sci 9:416–423CrossRefGoogle Scholar
  64. Harman G (1986) Change in view: principles of reasoning. MIT Press, CambridgeGoogle Scholar
  65. Harriger L, van den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS 7:e46497CrossRefGoogle Scholar
  66. Herculano-Houzel S (2016) The human advantage: a new understanding of how our brain became remarkable. MIT Press, CambridgeCrossRefGoogle Scholar
  67. Holyoak K (2012) Analogy and relational reasoning. In: Holyoak KJ, Morrison RG (eds) The Oxford handbook of thinking and reasoning. Oxford University Press, New York, pp 234–259CrossRefGoogle Scholar
  68. Hurley S (2006) Making sense of animals. In: Hurley S, Nudds M (eds) Rational animals?. Oxford University Press, OxfordCrossRefGoogle Scholar
  69. Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing in music. Nat Neurosci 6:682–687CrossRefGoogle Scholar
  70. Jungé JA, Dennett DC (2010) Multi-use and constraints from original use. Behav Brain Sci 33:277–278CrossRefGoogle Scholar
  71. Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2:e95CrossRefGoogle Scholar
  72. Karmiloff-Smith A (1992) Beyond modularity: a developmental perspective on cognitive science. MIT Press, CambridgeGoogle Scholar
  73. Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31(22):8259–8270CrossRefGoogle Scholar
  74. Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185CrossRefGoogle Scholar
  75. Krawczyk D (2010) The cognition and neuroscience of relational reasoning. Brain Res 1428:13–23CrossRefGoogle Scholar
  76. Krawczyk D (2018) Reasoning: the neuroscience of how we think. Elsevier, CambridgeGoogle Scholar
  77. Liang X, Hsu LM, Lu H, Sumiyoshi A, He Y, Yang Y (2017) The rich-club organization in rat functional brain network to balance between communication cost and efficiency. Cereb Cortex 28:924–935Google Scholar
  78. Luria AR (1966) Higher cortical functions in man. B. Haigh (trans.). Basic Books, New YorkGoogle Scholar
  79. Michel M (2017) A role for the anterior insular cortex in the global neuronal workspace model of consciousness. Conscious Cogn 49:333–346CrossRefGoogle Scholar
  80. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefGoogle Scholar
  81. Mithen S (1996) The prehistory of the mind. Thames and Hudson Ltd, LondonGoogle Scholar
  82. Nettle D (2007) A module for metaphor? The site of imagination in the architecture of the mind. Proc Br Acad 147:259–274Google Scholar
  83. Persons WS, Currie PJ (2015) Bristles before down: a new perspective on the functional origin of feathers. Evolution 69:857–862CrossRefGoogle Scholar
  84. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89CrossRefGoogle Scholar
  85. Pinker S (1997) How the mind works. Norton, New YorkGoogle Scholar
  86. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRefGoogle Scholar
  87. Prinz J (2006) Is the mind really modular? In: Stainton RJ (ed) Contemporary debates in cognitive science. Wiley-Blackwell, Upper Saddle River, pp 22–36Google Scholar
  88. Quartz SR, Sejnowski TJ (1997) The neural basis of cognitive development: a constructivist manifesto. Behav Brain Sci 20(4):537–556Google Scholar
  89. Rosch E (1978) Principles of categorization. In: Roach E, Lloyd B (eds) Cognition and categorization. Lawrence Erlbaum Associates, Upper Saddle River, pp 27–48Google Scholar
  90. Samuels R (1998) Evolutionary psychology and the massive modularity hypothesis. Br J Philos Sci 49:575–602CrossRefGoogle Scholar
  91. Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15:1463–1483CrossRefGoogle Scholar
  92. Schulz A (2008) Structural flaws: massive modularity and the argument form design. Br J Philos Sci 59:733–743CrossRefGoogle Scholar
  93. Senden M, Deco G, de Reus MA, Goebel R, van den Heuvel MP (2014) Rich club organization supports a diverse set of functional network configurations. NeuroImage 96:174–182CrossRefGoogle Scholar
  94. Senden M, Reuter N, van den Heuvel MP, Goebel R, Deco G (2017) Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior. NeuroImage 146:561–574CrossRefGoogle Scholar
  95. Shine JM, Bissett PG, Bell PT, Oluwasanmi K, Balsters JH, Gorgolewski KJ, Moodie CA, Poldrack RA (2016) The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92:1–11CrossRefGoogle Scholar
  96. Sober E (1984) The nature of selection: evolutionary theory in philosophical focus. The University of Chicago Press, ChicagoGoogle Scholar
  97. Sperber D (1994) The modularity of thought and the epidemiology of representations. In: Hischfield LA, Gelman SA (eds) Mapping the mind. Cambridge University Press, Cambridge, pp 39–67CrossRefGoogle Scholar
  98. Sperber D (2000) Metarepresentations in an evolutionary perspective. In: Sperber D (ed) Metarepresentations. Oxford University Press, Oxford, pp 117–137Google Scholar
  99. Sperber D (2002) In defense of massive modularity. In: Dupoux E (ed) Language, brain, and cognitive development. MIT Press, Cambridge, pp 47–57Google Scholar
  100. Sperber D (2004) Modularity and relevance: how can a massively modular mind be flexible and context-sensitive? In: Carruthers P, Laurence S, Stich S (eds) The innate mind: structure and content. Oxford University Press, New York, pp 53–68Google Scholar
  101. Sporns O (2010) Networks of the brain. MIT Press, CambridgeCrossRefGoogle Scholar
  102. Sporns O (2012) Discovering the human connectome. MIT Press, CambridgeCrossRefGoogle Scholar
  103. Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171CrossRefGoogle Scholar
  104. Sterelny K, Griffiths PE (1999) Sex and death: an introduction to philosophy of biology. The University of Chicago Press, ChicagoGoogle Scholar
  105. Symons D (1992) On the use and misuse of Darwinism in the study of human behavior. In: Barkow JH, Cosmides L, Tooby J (eds) The adapted mind: evolutionary psychology and the generation of culture. Oxford University Press, New York, pp 137–159Google Scholar
  106. Tooby J, Cosmides L (1987) Conceptual foundations of evolutionary psychology. In: Buss DM (ed) Handbook of evolutionary psychology. Wiley, HobokenGoogle Scholar
  107. Tooby J, Cosmides L (1992) The psychological foundations of culture. In: Barkow JH, Cosmides L, Tooby J (eds) The adapted mind: evolutionary psychology and the generation of culture. Oxford University Press, New York, pp 19–136Google Scholar
  108. Tooby J, Cosmides L (1995) Foreword in Baron-Cohen S, Mindblindness: an essay on autism and theory of mind. MIT Press, Cambridge, pp xi–xviiiGoogle Scholar
  109. Tooby J, Cosmides L (2000) Toward mapping the evolved functional organization of mind and brain. In: Gazzaniga MS (ed) The new cognitive neurosciences, 2nd edn. MIT Press, Cambridge, pp 1167–1178Google Scholar
  110. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16(1):55–61CrossRefGoogle Scholar
  111. Unsworth N, Robison MK (2017) A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control. Psychon Bull Rev 24(4):1282–1311CrossRefGoogle Scholar
  112. Uttal WR (2001) The new phrenology: the limits of localizing cognitive processes in the brain. MIT Press, CambridgeGoogle Scholar
  113. Van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786CrossRefGoogle Scholar
  114. Van den Heuvel MP, Sporns O (2013) An anatomical substrate for integration among functional networks in human cortex. J Neurosci 33(36):14489–14500CrossRefGoogle Scholar
  115. Van den Heuvel MP, Kahn R, Goñi J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. PNAS 109(28):11372–11377CrossRefGoogle Scholar
  116. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342CrossRefGoogle Scholar
  117. Weiskopf D (2010) Concepts and the modularity of thought. Dialectica 64(1):107–130CrossRefGoogle Scholar
  118. Weiskopf D (2014) The architecture of higher thought. In: Sprevak M, Kallestrup J (eds) New waves in philosophy of mind. Palgrave Macmillan, New York, pp 242–261CrossRefGoogle Scholar
  119. Weiskopf D (2016) Integrative modeling and the role of neural constraints. Philos Sci Arch 83(5):675–685Google Scholar
  120. Woodward J, Cowie F (2004) The mind is not (just) a system of modules shaped (just) by natural selection. In: Hitchcock C (ed) Contemporary debates in philosophy of science. Wiley-Blackwell, Upper Saddle River, pp 312–334Google Scholar
  121. Yue Q, Martin R, Fischer-Baum S, Ramos Nuńez A, Ye F, Deem M (2017) Brain modularity mediates the relation between task complexity and performance. J Cogn Neurosci 9:1532–1546CrossRefGoogle Scholar
  122. Zamora-Lòpez G, Zhou C, Kurths J (2009) Graph analyses of cortical networks reveals complex anatomical communication substrate. Chaos 19(1):015117CrossRefGoogle Scholar
  123. Zamora-Lòpez G, Zhou C, Kurths J (2011) Exploring brain function from anatomical connectivity. Front Neurosci 5(83):1–11Google Scholar
  124. Zeman A, Obst O, Brooks KR, Rich AN (2013) The Müller-Lyer illusion in a computational model of biological object recognition. PLoS ONE 8(2):e56126CrossRefGoogle Scholar
  125. Zerilli J (2017) Against the “system” module. Philos Psychol 30(3):235–250CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA

Personalised recommendations