Biology & Philosophy

, Volume 32, Issue 3, pp 395–420 | Cite as

Environmental complexity, life history, and encephalisation in human evolution

Article

Abstract

Brain size has increased threefold during the course of human evolution, whilst body weight has approximately doubled. These increases in brain and body size suggest that reproductive (and, therefore, evolutionary) rates must have slowed considerably during this period. During the same period, however, environmental heterogeneity has increased substantially. A central tenet of life-history theory states that in heterogeneous environments, organisms with fast life histories will be favoured. The human lineage, therefore, has proceeded in direct contradiction of this theory. This contribution attempts to resolve this contradiction by recourse to Godfrey-Smith’s Environmental Complexity Thesis, which states that the function of cognition is to enable the organism to deal with environmental complexity. It is suggested that among slowly reproducing organisms the behavioural flexibility provided by advanced cognitive abilities is a fundamental component of adaptation to heterogeneous environments. In the human lineage this flexibility is manifest particularly in the increasing complexity of material culture.

Keywords

Cognition Evolution Dispersal Complexity Hominin 

References

  1. Aiello LC, Dunbar RIM (1993) Neocortex size, group size, and the evolution of language. Curr Anthropol 34:184–193. doi:10.1086/204160 CrossRefGoogle Scholar
  2. Aiello LC, Wheeler P (1995) The expensive tissue hypothesis—the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199–221. doi:10.1086/204350 CrossRefGoogle Scholar
  3. Ambrose SH (2010) Coevolution of composite-tool technology, constructive memory, and language implications for the evolution of modern human behavior. Curr Anthropol 51:S135–S147. doi:10.1086/650296 CrossRefGoogle Scholar
  4. Ash J, Gallup GG Jr (2007) Paleoclimatic variation and brain expansion during human evolution human nature-an interdisciplinary biosocial. Perspective 18:109–124. doi:10.1007/s12110-007-9015-z Google Scholar
  5. Barrett L, Gaynor D, Rendall D, Mitchell D, Henzi SP (2004) Habitual cave use and thermoregulation in chacma baboons (Papio hamadryas ursinus). J Hum Evol 46:215–222. doi:10.1016/j.jhevol.2003.11.005 CrossRefGoogle Scholar
  6. Binford LR (1976) Forty-seven trips: a case study in the character of some formation processes of the archaeological record. In: Hall ES (ed) Contributions to anthropology: the interior peoples of Northern Alaska. National Museum of Man, Ottawa, pp 299–351Google Scholar
  7. Bromham L, Rambaut A, Harvey PH (1996) Determinants of rate variation in mammalian DNA sequence evolution. J Mol Evol 43:610–621. doi:10.1007/bf02202109 CrossRefGoogle Scholar
  8. Charnov EL, Berrigan D (1993) Why do female primates have such long lifespans and so few babies? or life in the slow lane. Evol Anthropol 1:191–194. doi:10.1002/evan.1360010604 CrossRefGoogle Scholar
  9. DeMenocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24. doi:10.1016/s0012-821x(04)00003-2 CrossRefGoogle Scholar
  10. Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6:178–190. doi:10.1002/(sici)1520-6505(1998)6:5<178:aid-evan5>3.0.co;2-8 CrossRefGoogle Scholar
  11. Gamble CS (1997) The skills of the lower palaeolithic. Proc Prehist Soc 63:407–410CrossRefGoogle Scholar
  12. Godfrey-Smith P (1996) Complexity and the function of mind in nature. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Gomez-Mestre I, Jovani R (2013) A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proc R Soc B 280. doi:10.1098/rspb.2013.1869
  14. Grabowski M, Hatala KG, Jungers WL, Richmond BG (2015) Body mass estimates of hominin fossils and the evolution of human body size. J Hum Evol 85:75–93. doi:10.1016/j.jhevol.2015.05.005 CrossRefGoogle Scholar
  15. Grove M (2011a) Change and variability in Plio-Pleistocene climates: modelling the hominin response. J Archaeol Sci 38:3038–3047. doi:10.1016/j.jas.2011.07.002 CrossRefGoogle Scholar
  16. Grove M (2011b) Speciation, diversity, and mode 1 technologies: the impact of variability selection. J Hum Evol 61:306–319. doi:10.1016/j.jhevol.2011.04.005 CrossRefGoogle Scholar
  17. Grove M (2012a) Amplitudes of orbitally induced climatic cycles and patterns of hominin speciation. J Archaeol Sci 39:3085–3094. doi:10.1016/j.jas.2012.04.023 CrossRefGoogle Scholar
  18. Grove M (2012b) Orbital dynamics, environmental heterogeneity, and the evolution of the human brain. Intelligence 40:404–418. doi:10.1016/j.intell.2012.06.003 CrossRefGoogle Scholar
  19. Grove M (2014) Evolution and dispersal under climatic instability: a simple evolutionary algorithm. Adapt Behav 22:235–254. doi:10.1177/1059712314533573 CrossRefGoogle Scholar
  20. Grove M (2016) Population density, mobility, and cultural transmission. J Archaeol Sci 74:75–84. doi:10.1016/j.jas.2016.09.002 CrossRefGoogle Scholar
  21. Grove M, Pearce E, Dunbar RIM (2012) Fission–fusion and the evolution of hominin social systems. J Hum Evol 62:191–200. doi:10.1016/j.jhevol.2011.10.012 CrossRefGoogle Scholar
  22. Grove M, Lamb H, Roberts H, Davies S, Marshall M, Bates R, Huws D (2015) Climatic variability, plasticity, and dispersal: a case study from Lake Tana, Ethiopia. J Hum Evol 87:32–47. doi:10.1016/j.jhevol.2015.07.007 CrossRefGoogle Scholar
  23. Hart TB, Hart JA (1986) The ecological basis of hunter-gatherer subsistence in African rain forests: the Mbuti of Eastern Zaire. Hum Ecol 14:29–55. doi:10.1007/bf00889209 CrossRefGoogle Scholar
  24. Harvey PH, Clutton-Brock TH (1985) Life-history variation in primates. Evolution 39:559–581. doi:10.2307/2408653 CrossRefGoogle Scholar
  25. Hays JD, Imbrie J, Shackleton NJ (1976) Variation in earth’s orbit—pacemaker of ice ages. Science 194:1121–1132. doi:10.1126/science.194.4270.1121 CrossRefGoogle Scholar
  26. Hennemann WW (1983) Relationships among body mass, metabolic rate and the intrinsic rate of natural increase in mammals. Oecologia 56:104–108. doi:10.1007/bf00378224 CrossRefGoogle Scholar
  27. Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus Behavioral inertia in evolution: a null model approach. Am Nat 161:357–366. doi:10.1086/346135 CrossRefGoogle Scholar
  28. Isler K, Van Schaik CP (2009a) Why are there so few smart mammals (but so many smart birds)? Biol Lett 5:125–129. doi:10.1098/rsbl.2008.0469 CrossRefGoogle Scholar
  29. Isler K, van Schaik CP (2009b) The expensive brain: a framework for explaining evolutionary changes in brain size. J Hum Evol 57:392–400. doi:10.1016/j.jhevol.2009.04.009 CrossRefGoogle Scholar
  30. Kelly RL, Todd LC (1988) Coming into the country: early Paleoindian hunting and mobility. Am Antiq 53:231–244. doi:10.2307/281017 CrossRefGoogle Scholar
  31. Kingston JD (2007) Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. In: Stinson S (ed) Yearbook of physical anthropology, vol 50. Yearbook of Physical Anthropology, pp 20–58. doi:10.1002/ajpa.20733
  32. Lack D (1954) The natural regulation of animal numbers. Clarendon Press, OxfordGoogle Scholar
  33. Lahr MM, Foley RA (1998) Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Yearbook of Physical Anthropology 41:137–176CrossRefGoogle Scholar
  34. Levins R (1968) Evolution in changing environments. Princeton University Press, PrincetonGoogle Scholar
  35. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records. Paleoceanography. doi:10.1029/2004pa001071 Google Scholar
  36. Lycett SJ, Collard M, McGrew WC (2009) Cladistic analyses of behavioural variation in wild Pan troglodytes: exploring the chimpanzee culture hypothesis. J Hum Evol 57:337–349. doi:10.1016/j.jhevol.2009.05.015 CrossRefGoogle Scholar
  37. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  38. Maslin MA, Trauth MH (2009) Plio-Pleistocene East African pulsed climate variability and its influence on early human evolution. The first humans: origin and early evolution of the genus Homo. Contributions from the third stony brook human evolution symposium and workshop October 3–October 7, 2006. [Vertebrate Paleobiology and Paleoanthropology Series.]. doi:10.1007/978-1-4020-9980-9_13
  39. McGrew WC (1992) Chimpanzee material culture: implications for human evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. McHenry HM (1992) Body size and proportions in early hominids. Am J Phys Anthropol 87:407–431. doi:10.1002/ajpa.1330870404 CrossRefGoogle Scholar
  41. Millar JS (1977) Adaptive features of mammalian reproduction. Evolution 31:370–386. doi:10.2307/2407759 CrossRefGoogle Scholar
  42. Nabholz B, Glemin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25:120–130. doi:10.1093/molbev/msm248 CrossRefGoogle Scholar
  43. Parry WJ, Kelly RL (1987) Expedient core technology and sedentism. In: Johnson JK, Morrow CK (eds) The organization of core technology. Westview Press, Boulder, pp 285–304Google Scholar
  44. Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597. doi:10.1086/282697 CrossRefGoogle Scholar
  45. Potts R (1996) Humanity’s descent: the consequences of ecological instability. William Morrow, New YorkGoogle Scholar
  46. Potts R (1998) Variability selection in hominid evolution. Evol Anthropol 7:81–96. doi:10.1002/(sici)1520-6505(1998)7:3<81:aid-evan3>3.0.co;2-a CrossRefGoogle Scholar
  47. Potts R (2004) Paleoenvironmental basis of cognitive evolution in great apes. Am J Primatol 62:209–228. doi:10.1002/ajp.20016 CrossRefGoogle Scholar
  48. Powell A, Shennan S, Thomas MG (2009) Late pleistocene demography and the appearance of modern human behavior. Science 324:1298–1301. doi:10.1126/science.1170165 CrossRefGoogle Scholar
  49. Pruetz JD, Bertolani P (2007) Savanna chimpanzees, pan troglodytes verus, hunt with tools. Curr Biol 17:412–417. doi:10.1016/j.cub.2006.12.042 CrossRefGoogle Scholar
  50. Pruetz JD, Marchant LF, Arno J, McGrew WC (2002) Survey of savanna chimpanzees (Pan troglodytes verus) in southeastern Senegal. Am J Primatol 58:35–43. doi:10.1002/ajp.10035 CrossRefGoogle Scholar
  51. Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural intelligence. Philos Trans R Soc B Biol Sci 366:1017–1027. doi:10.1098/rstb.2010.0342 CrossRefGoogle Scholar
  52. Robson SL, Wood B (2008) Hominin life history: reconstruction and evolution. J Anat 212:394–425. doi:10.1111/j.1469-7580.2008.00867.x CrossRefGoogle Scholar
  53. Ross C (1988) The intrinsic rate of natural increase and reproductive effort in primates. J Zool 214:199–219CrossRefGoogle Scholar
  54. Ross C (1992) Environmental correlates of the intrinsic rate of natural increase in primates. Oecologia 90:383–390. doi:10.1007/bf00317695 CrossRefGoogle Scholar
  55. Sacher GA (1959) Relation of lifespan to brain weight and body weight in mammals. In: Wolstenholme GEW, O’Conner M (eds) Ciba foundation symposium on the lifespan of animals, vol 5. Wiley, Chichester, pp 115–141Google Scholar
  56. Sacher GA (1978) Longevity and aging in vertebrate evolution. Bioscience 28:497–501. doi:10.2307/1307295 CrossRefGoogle Scholar
  57. Sacher GA, Staffeldt EF (1974) Relation of gestation time to brain weight for placental mammals: implications for theory of vertebrate growth. Am Nat 108:593–615. doi:10.1086/282938 CrossRefGoogle Scholar
  58. Schoeninger MJ, Moore J, Sept JM (1999) Subsistence strategies of two “savanna” chimpanzee populations: the stable isotope evidence. Am J Primatol 49:297–314. doi:10.1002/(sici)1098-2345(199912)49:4<297:aid-ajp2>3.0.co;2-n CrossRefGoogle Scholar
  59. Shannon CE (1948) A mathematical theory of communication bell systems technical journal 27:379–423 and 623–656Google Scholar
  60. Shultz S, Dunbar RIM (2010) Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J Comp Psychol 124:252–260. doi:10.1037/a0018894 CrossRefGoogle Scholar
  61. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH (1975) Report of the task group on reference man. Pergamon, OxfordGoogle Scholar
  62. Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29. doi:10.1159/000155963 CrossRefGoogle Scholar
  63. Trauth MH et al (2010) Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Quatern Sci Rev 29:2981–2988. doi:10.1016/j.quascirev.2010.07.007 CrossRefGoogle Scholar
  64. Ungar PS, Grine FE, Teaford MF (2006) Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annu Rev Anthropol 35:209–228. doi:10.1146/annurev.anthro.35.081705.123153 CrossRefGoogle Scholar
  65. Watts DP, Mitani JC (2002) Hunting behavior of chimpanzees at Ngogo, Kibale National Park, Uganda. Int J Primatol 23:1–28. doi:10.1023/a:1013270606320 CrossRefGoogle Scholar
  66. Western D (1979) Size, life-history and ecology in mammals. Afr J Ecol 17:185–204. doi:10.1111/j.1365-2028.1979.tb00256.x CrossRefGoogle Scholar
  67. White L (1959) The evolution of culture: the development of civilization to the fall of Rome. McGraw-Hill, New YorkGoogle Scholar
  68. White TD et al (2009) Macrovertebrate Paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326:87–93. doi:10.1126/science.1175822 Google Scholar
  69. Wyles JS, Kunkel JG, Wilson AC (1983) Birds, behavior, and anatomical evolution. Proc Natl Acad Sci USA 80:4394–4397. doi:10.1073/pnas.80.14.4394 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Archaeology, Classics and EgyptologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations